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Abstract

In this paper, an application of the duality principle in finite element shell analysis is
presented. It is based upon Lure (Prikl. Mat. Mekh, XIV 5, 1958) and Goldenveizer's
(Theory of thin shells, Pergamon Press, 1961) theory of thin shells. For the finite
element analysis of thin shells, using the stress function, the problem of finding a
stress fields in equilibrium and expressing their continuity across the interfaces is
shown to be identical to the problem of derivation of conforming displacement
fields and vice versa. It appears that one may derive from this concept of duality a
new family of shell finite elements: the auto-dual shell elements. In this paper, we
consider a self-dual flat element for thin shell analysis. This element is based on the
already developed and implemented in LTAS department, University of Liège. It was
mixed hybrid elements called ‘mixed métis’. Numerical efficiency is demonstrated by
means of some examples: cylindrical shell roof simply supported by two diaphragms
and submitted to its dead weight and cylinder loaded by two diametrically opposed
point loads, clamped hyperbolic shell loaded by uniform normal pressure.

Keywords: Thin shell finite element; Hybrid and Métis Model; Duality in shell
analysis; Stress and displacement element; Equilibrium element; Stress function
Background
Expanding from the analogy between flexure and extension of flat plates [1], Fraeys De

Veubeke and Zienkiewicz [2] and, later, Elias Ziad [3] have pointed out the possibility

of dual analysis of plates using equilibrium and conforming finite elements. The

generalization of this duality to the case of curved shell from the finite element point

of view has been presented by Nguyen Dang Hung [4]. These considerations are based

on the static-geometric analogy due to Lure [5] and Goldenveizer [6]. In this paper, we

discuss a further development of this duality by combining a hybrid stress and dis-

placement model into a flat shell element.

This hybridmixed planar shell element is self-dual because the shape functions of the

dual quantities (Airy's stress function for the membrane effect and the vertical deflec-

tion for the bending effect, on one hand, stretching displacement field and bending

stress-function, on the other hand) are the same. The choice of the nodal connections

is such that nodal displacements or mean displacements are the unknowns: the
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element can therefore be readily implemented into finite element algorithms based

upon the displacement method.

Both the bending element and the membrane element which combine into the planar

shell element belong to a special class of hybrid elements called ‘metis element’ [7,8].

The important advantages exhibited by these elements concerning speed of conver-

gence and stability in stress calculation are expected in the present case.

A raw version about the existence of this element was presented long time ago in

Madrid [9] but this present version is more detailed mostly about the detailed illustra-

tions of the concept of self-dual finite elements.

Methods
Development of the element

Duality in the finite element analysis of shells

Lure [5] and Goldenveizer [6] have demonstrated that a perfect analogy does exist be-

tween the stress quantities and the strain quantities in the formulation of thin shell

theory. Compatibility equations for strains and displacement components become

equilibrium equations for stresses and stress function components when dual quan-

tities are replaced by each other as follows:

u; v;w; ε1; ε2;ω12;ω21; κ1; κ2; τ12; τ21j j ð1Þ

U ; V ;W ;−M2;−M1;M12;M21;N2;N1;−N12j j ð2Þ

Where dT = |u, v, w| are the displacement components defined on the middle surface

aT ¼ −M2;−M1;M12;M21;N2;N1;−N21;−N12j j

are the moments and membrane forces defined per unit length of middle surface as in

the classical shell theory, see for example reference [10], U, V, and W are the stress

functions.

It is shown that equilibrium and compatibility are exactly satisfied with the following

definition of the strain and stress:

ε ¼ ∇d; σ ¼ ∇D ð3Þ

where D T=|U,V,W| are the stress function components defined on the middle surface

~N
T
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α1, α2, orthogonal coordinate system
A1, A2, corresponding Lame's system

ρ1, ρ2, radius of geodesic curvature on the middle surface
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Conformity and diffusivity

A displacement field satisfies conformity in a curved shell if the following continuity is

insured along any edge of the shell element:

unð Þþ ¼ unð Þ−; unð Þþ ¼ usð Þ−; wnð Þþ ¼ wnð Þ−; ∂w
∂n

� �þ
¼ ∂w

∂n

� �−

ð5Þ

Where n
→

and s
→

are the middle surface normal and tangent to the edge, respectively.
A stress resultant field satisfies diffusivity if the following quantities are continuously

transmitted through the boundary of the element.

Nnð Þþ ¼ Nnð Þ−; �Nsð Þþ ¼ Ns þMns=Rsð Þþ ¼ �Nsð Þ−; Mnð Þþ ¼ Mnð Þ− ð6Þ

Knð Þþ ¼ Qn þ ?Mnsð Þ=?s ¼ Knð Þ−

And the local jumps of the twisting moment at vertex k is as follows:
Zk ¼ Mnsð Þþk − Mnsð Þ−k
Nguyen Dang Hung [4] has presented a boundary duality theorem which states
that: ‘If displacements conformity is satisfied, stress resultants diffusivity is also

satisfied when the same fields are used for displacement and stress functions’. In

other words, let us choose a shape function for the displacement field d, making

use of some appropriate connectors (nodal displacements) on the boundary, such

that (5) is satisfied; if the same shape function is chosen for the stress function field

D, that is similar assumptions on the field and corresponding connectors (nodal

stress functions), then equilibrium conditions on the boundary (6) are automatic-

ally satisfied.

In the case of planar shell 1
R1
¼ 1

R2
¼ 0

� �
, there is no coupling between membrane

stress components and bending moments and if Cartesian coordinates are used

1
ρ1
¼ 1

ρ2
¼ 0

� �
, the derivative operator ∇ is reduced to a simpler form:

∇T ¼

∂
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0
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0 0 0
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The dual quantities become

dT ¼ u; v;wj j; εT ¼ εx; εy;
γxy
2

; κx; κy; κxy
��� ��� ð8Þ

DT ¼ U ;V ;−Fj j; σT ¼ −My;−Mx;Mxy;Ny;Nx;−Nxy

�� �� ð9Þ

Where we recognize U and V as Southwell's stress functions (for bending effects) and
F as Airy's stress function (for the membrane part). The boundary duality theorem

identifies the problem of finding stress functions U and V and of expressing their
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continuity across the interface with the problem encountered in the derivation of con-

forming displacement fields for membrane stretching [11]:

u; vð Þ continuous entails U; Vð Þ continuous i:e: force components Mn; Kncontinuous
and Zk ¼ 0 at the vertex k:

ð10Þ

Conversely, according to the same theorem, the problem of finding a continuous stress

field (Nx, Ny, Nxy) and expressing the continuity of the components (Nn, Nns) across

the interface of a membrane element is the same as the problems of finding a conform-

ing transversal displacement in plate bending.

Nn;Nns;ð Þ F ;−
∂F
∂n

� �
w;

∂w
∂n

� �
Continuous ð11Þ

Figure 1a presents a triangular element with quadratic displacement field along the

edges; 12 nodal displacements are necessary to satisfy the conformity.

Figure 1b shows a bent plate finite element with 12 nodal stress functions as con-

nectors; this triangle ensures continuity of the normal moment Mn (linear along an

edge), the equivalent shear force Kn (constant along an edge) and the local jumps

of twisting moment Zk at each corner. If forces are taken as nodal values rather

than stress functions, the corresponding 12 connectors are those exhibited in

Figure 1c.

This system of nodal forces is adopted in reference [12] for the formulation of an

equilibrium model for plate bending with linear assumptions for the moment field.

Figure 2a represents a conforming element for plate bending with quadratic assump-

tions on the vertical deflection w along the edges.

Figure 2b shows the dual membrane element with nodal values of the Airy' stress

function; it is equivalent to the element shown on Figure 2c where the resultants.

Rx = ∫ (l. Nx +m. Nxy)dx; Ry = ∫ (m. Ny + l. Nxy)dy have been chosen as nodal values.

(l, m are the components of the unit normal to the edge).
Figure 1 A triangular element with quadratic displacement field along the edges. (a) Membrane
element with quadratic displacement field. Conformity is satisfied with 12 nodal connectors. (b) Dual
element for plate bending with quadratic stress field. Boundary equilibrium (diffusivity) is satisfied with 12
stress connectors. (c) Corresponding element for plate bending with linear moment field. Boundary
equilibrium (diffusivity) requires 12 nodal forces.



Figure 2 Elements of plate bending and membrane stretching. (a) Element of plate bending with
quadratic deflection. Conformity requires 2 nodal displacements on each edge. (b) Dual element for
membrane stretching with quadratic Airy's function. Diffusivity requires nine nodal stress function
connectors. (c) Corresponding element for membrane stretching constant stress field. Boundary equilibrium
(diffusivity) requires six nodal forces.

Hung Asia Pacific Journal on Computational Engineering 2014, 1:11 Page 5 of 14
http://www.apjcen.com/content/1/1/11
Hybrid finite elements and métis finite elements

Let us now consider the following mixed hybrid functional:

I ¼ IT þ IB ð12Þ

Where IT is the modified complementary energy functional for the membrane effect:

IT ¼
X
N

Z
AN

1
2
Tijkl:NijNkl

0@ 1AdA−
Z
ΓN

nj:Nij u˜i dsþ
Z
ΓσN

nj: �N iju˜i dsÞ ð13Þ

and IB is the modified potential energy functional for the bending effect:
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In these expressions,
Tijkl ¼ T½ � ¼ 1
Eh

1 −v 0
−v 1 0
0 0 2 1þ vð Þ

24 35is the elastic compliance of the stretching effect

Bijkl ¼ B½ �

¼ Eh3

12 1−ν2ð Þ
1 ν 0
ν 1 0
0 0 2 1−νð Þ

24 35 is the elastic compliance of the bending effect

AN, the domain of element

N, its boundary

ΓσN
, portion of where tensions nj

�N ij ¼ �T i are prescribed

p, normal pressure

h, thickness of the shell
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One may notice that in (13) there are two unknown fields: the stress field Nij must

be defined and in equilibrium over the domain AN.

The displacement field ~ui is defined on the boundary ΓN in such a way that conform-

ity (i.e., the two first relations of 5) is insured. This functional was first proposed by

Pian [13,14] for a hybrid stress finite element formulation. On the other hand, func-

tional (14) possesses two other unknown fields: the deflection w must be defined con-

tinuously in AN; the stress field ~Mn ~Kn ~Z
� �

must be defined on the boundary ΓN in

such a way that diffusivity (i.e., three last relations of 6) is satisfied.

This functional is adopted by Jones [15] for a hybrid displacement finite element

formulation.

Nguyen Dang Hung [7,8] has shown that if the boundary conforming field ~ui of (13)

defined on the boundary ΓN can be extended over AN in other words if the two un-

known fields in (13) are well defined everywhere in the closed domain �AN , the hybrid

stress element belongs to a special class called ‘mongrel displacement element’ which

leads to important advantage in energy convergence. In the same way, if the two un-

known fields of functional (14) are well defined in the closed domain �AN (i.e., equilibrium

boundary field ~Mn ~Kn ~Z
� �

can be extended everywhere in �AN ), the corresponding

hybrid displacement element for plate bending becomes a ‘mongrel stress element’ with

the same properties concerning the convergence.

In this paper, such is the case for the mixed hybrid planar shell element described in

this paper as well for membrane as for bending effects.

Self-dual metis planar shell element

Let us make the following assumptions concerning the four unknown fields of the hy-

brid mixed functional (12):

w ¼
XM
m¼0

Xn
n¼0

βmnx
m−nyn;−F ¼

XM
m¼0

Xn
n¼0

β0mnx
m−nyn ð15Þ

ue ¼ α1 þ α2xþ α3yþ α4x2 þ α5xyþ α6y2

ve ¼ α7 þ α8xþ α9yþ α10x2 þ α11xyþ α12y2

Ve ¼ α07 þ α08xþ α09yþ α010x
2 þ α011xyþ α012y

2

Ue ¼ α01 þ α02xþ α03yþ α04x
2 þ α05xyþ α06y

2

ð16Þ

Where βmn, β' mn, αi, α' i are the interpolation parameters,
M is the maximum degree of the polynomial (15).

Let us adopt for the membrane element the natural system of nodal displacements

shown on Figure 1a and for the bending effect the natural system of nodal stress func-

tions shown on Figure 1b. It appears that we will have a mongrel-mixed planar shell elem-

ent. Assumptions (16) indicate that the boundary fields ~u ~vð Þ and ~U ~V
	 


are defined

everywhere in �AN and conformity and diffusivity are both satisfied with the system of

24 nodal values shown on Figure 3.

Dual quantity <w > is a sort of mean vertical deflection of the shell.

This element, denominated ‘HYTCOQ’ constitutes a self-dual metis planar shell

element because the strain field and the stress field for the membrane and the bending

effects are respectively dual quantities of each other in the sense discussed in the

section Duality in the finite element analysis of shells. The details of the stiffness



Figure 3 Mixed and self-dual planar shell element. (a) Metis mixed planar shell element. This element is
self-dual because its bending and stretching effect are represented by dual models of Figure 1a,c. (b) Self-dual
metis mixed planar shell element (HYTCOQ). The nodal forces ~Mn ~K n ~Z

� �
are replaced by the nodal

displacement generalized one ϕn < w > w½ �.
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matrix formation for the membrane and bending effects are respectively given in

references [16,17].

Here, we merely observe that, for the bending effect, we have formulated the element

in such a way that nodal generalized displacements replace nodal forces as unknowns;

in this way, no special modifications are required to run this element on existing codes

written for displacement elements.

On the other hand, we notice that the system of nodal displacements of this element

(Figure 3b) is well suited for easy connection of adjacent elements. In particular, the

normal slope is locally defined on the edge of the element; this avoids the drawback fre-

quently encountered with flat shell elements when the slopes are defined at the

corners.

One may summarize here the nature of HYTCOQ:

(a) The membrane part possesses displacement metis stretching element with

quadratic displacement field defined on the vertexes. The equilibrium stress field

(which is derived from a polynomial Airy's function) is defined only inside the

element. It appears that when the degree of the Airy's function such that at least

M = 4, stress field is quadratic the normal rule for kinematic stability is respected.

In these conditions, the displacement hybrid or metis formulation does not imply

spurious modes, this element leads to good behavior in convergence and precision

according to the numerical tests realized in LTAS. Recently (2013), a new

examination is performed and it appears that this element leads to very good

performance in terms of convergence, precision, and numerical stability [18].

(b) The bending part possesses stress metis element with linear moment field defined

on the vertexes. The vertical defection (which is derived from a polynomial

function) is defined only inside the element. This bending stress metis element was

examined intensively, and the very good results are described in the paper [17].

As both stretching and bending effects are represented by very good elements and

there exists no interaction effect due to the flat geometry, we must expect to a good

performance of the present self-dual planar shell element.
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Results and discussion
Numerical results

Preliminary remarks

This section intends to show the performances of this new mongrel-mixed element by

means of a few examples. Simply or doubly curved shells are chose as, namely, cylin-

drical roof and cylinder or hyperbolic roof. Each example is illustrated by several dia-

grams. On each of these:
– A small drawing represents the structure, its boundary conditions, its loading, all

pertinent data and the finest discretization of mesh.

– The elements being compared are represented by a symbol; their meaning is

defined on every figure because it can vary from one figure to the next; the results

of a new element called ‘HYTCOQ’ will be always illustrated in the figures.

– Appropriate references are also given [19].

– The stresses shown are always those obtained with the finest grid; it was deemed

useful to represent these stresses even in case where no analytical solution or other

numerical results are available.

Cylindrical shell roof supported by two vertical diaphragms and loaded by its dead weight

It is useful to mention that the vertical diaphragms restrain the displacement along X

and Z directions but let free Y displacement. The rotation in the direction of X axis is

not prevented. The double symmetry of the structure allows considering only a quarter

of the structure.

Figure 4 shows the convergence of the strain energy. The analytical solution is taken

from Scordelis and Lo [20]. The HYTCOQ element exhibits a relatively fast conver-

gence, and the exact solution is reached with less than 300 degrees of freedom. For

comparison motivation, we have chosen the ‘GSS3’ curved triangular element elabo-

rated by Idelsohn [21]. This latter has really a better behavior than HYTCOQ possibly

because the curvature is taken into account.

We can finally notice the following important fact: the convergence of the strain en-

ergy seems to be monotonous and upper bounds are obtained for this example; we will

see that this monotony is preserved for other examples even if lower bounds are ob-

tained. This remarkable situation has been theoretically discussed by Nguyen Dang

Hung [7,8].

Figure 5 illustrates the convergence of the displacement at the point B. The analytical

solution has been calculated by Scordelis and Lo [20] and is equal to 6.308 ft.

In this example, only the GSS3 has a better behavior than the HYTCOQ.

MTS2 element behaves exactly like HYTCOQ but the others are rather worse al-

though they are curved and therefore well suited for this example.

Note that the analytical solution is about 3% higher than the ‘exact’ one towards

which elements MTS2 and HYTCOQ converge.

Figure 6 presents bending moments along AB. The finite element stresses are evalu-

ated by calculating a mean value over each element compared with the analytical solu-

tion, the results of HYTCOQ with 515 degrees of freedom look excellent: nearly all the

points are on the analytical curves.



Figure 5 The convergence of the displacement at the point B [21–23].

Figure 4 The convergence of the strain energy.
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Figure 6 Bending moments along AB [20].
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Cylindrical shell

Because of the symmetry, an eighth of the structure is discretized using HYTCOQ.

Figure 7 presents the convergence of the displacement under the load. We can see

that the present element has a very good behavior in comparison with cylindrical ele-

ments which are theoretically better suited for this problem.

On this diagram, we can also observe that the behavior of the ‘CS’ element depends

on the type of discretization for there are two different curves for this element; it ap-

pears better to choose a given discretization along the curvature than along the axis of

the cylinder.

The ‘exact’ solution towards which all the numerical results do converge seems to be

5% higher than the analytical solution given by Timoshenko [26]; but this latter in-

cludes only bending effects.

Figure 8 illustrates the bending and the membrane stresses along at y = L/2.

No stress diagrams were found in the literature for this example, but all the stresses

tend towards an infinite value under the load except for the Mxy moment which is

equal to zero because of symmetry.



Figure 8 Bending and membrane stress along θ at y = l/2.

Figure 7 Convergence of the displacement under the load [24,25].
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Clamped square hyperbolic parabolic subjected to a uniform normal pressure

The double symmetry of the structure and the triangular shape of the element allow to

study only one quarter of the structure.

Figure 9 presents the convergence of the displacement at the point A. The analytical

solution given by Brebbia [27] is equal to W = (where D is represented here the elastic

bending rigidity).

The convergence of the HYTCOQ element is not monotonous. This quality is re-

quired for only the convergence of the strain energy which indeed does happen (we

have not shown it because no reference value was available).

The other elements ‘CR20’ and ‘CR20SE’ converge either to another value or more

slowly than ‘HYTCOQ’.

Figure 10 finally shows the vertical displacement along AD. We compare the re-

sult with the result of ‘CR20’ element. The two solutions are very similar except

near the center of the shell, where HYTCOQ gives a better value than CR20 be-

cause the exact value obtained from the previous example is W = −0.02452 cm.

Unfortunately, no analytical solution seems to be available to decide which result

is best.

This example is interesting because it deals with a doubly curved structure and we

can see that the behavior of HYTCOQ element is still very good.
Figure 9 Convergence of the displacement at the point A.



Figure 10 Vertical displacement along AD.
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Conclusions
Implementation of the dual properties in shells is a very powerful tool to generate the

appropriate finite elements. In this paper, we focus our attention on a special case: der-

ivation of a self-dual metis planar shell element. The versatility and the fast conver-

gence of this type of finite element are confirmed by numerical experiments. It should

be interesting to perform a new self-dual pure planar element composed with the quad-

ratic displacement triangle for stretching aspect and the equilibrium model for plate

bending proposed very early by Fraeijs de Veubeke and Sander in 1968. On the other

hand, we hope that similar duality in shell analysis should be extended to smooth elem-

ent method [28].
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