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Abstract

This paper develops a new finite element method (FEM)-based upper bound
algorithm for limit and shakedown analysis of hardening structures by a direct
plasticity method. The hardening model is a simple two-surface model of plasticity
with a fixed bounding surface. The initial yield surface can translate inside the
bounding surface, and it is bounded by one of the two equivalent conditions: (1) it
always stays inside the bounding surface or (2) its centre cannot move outside the
back-stress surface. The algorithm gives an effective tool to analyze the problems
with a very high number of degree of freedom. Our numerical results are very close
to the analytical solutions and numerical solutions in literature.
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Background
Shakedown analysis for hardening structures has been investigated by many researchers.

Among hardening models, the isotropic hardening law is generally not reasonable in situa-

tions where structures are subjected to cyclic loading because it does not account for the

Bauschinger effect and rejects the possibility of incremental plasticity. The unbounded kine-

matic hardening model has already been introduced theoretically by Melan [1] and later by

Prager [2]. Applications of this model have been investigated by Maier [3] and Ponter [4].

The unbounded kinematic hardening model cannot estimate the plastic collapse and also in-

cremental plasticity but only low-cycle fatigue, while low-cycle fatigue limit with the ki-

nematical hardening model seems not to be essentially different from the perfectly

plastic model, cf. Gokhfeld and Cherniavsky [5] and Stein and Huang [6].

Introducing a bounding surface in Melan-Prager's model, a two-surface model of

plasticity with a fixed bounding surface is achieved which appears to be most basic,

suitable and simple for shakedown analysis. Application of bounded kinematic harden-

ing model was introduced theoretically and numerically by Weichert and Groß-Weege

[7] who used the generalized standard material model (GSM). They used Airy's stress

function to satisfy the equilibrium conditions in the interior of the structures fulfilled.

Shakedown theorems for bounded linear and nonlinear kinematic hardening have been

proposed by Bodovillé and de Saxcé [8], Pham [9,10] and Nguyen [11].

Numerical investigations for bounded kinematic hardening using basic reduction

technique have been introduced by Staat and Heitzer [12,13] and Stein and Zhang

[14]. By the lower bound approach, it permits to avoid the nondifferentiability of the
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objective function, which must be regularized via internal dissipation energy and there

is no incompressibility constraint in nonlinear programming problem, but this ap-

proach suffers from nonlinear inequality constraints.

A company of lower bound algorithm is the upper bound algorithm, which is based on

Koiter theorem. For perfectly plastic structures, the upper bound algorithm has been estab-

lished by Yan and Nguyen Dang [15,16] and Yan et al. [17]. The major numerical obstacle in
this approach is the singular property of plastic dissipation function. Dealing with this diffi-
culty, the researchers replaced the original dissipation function Dp _εpij

� �
by Dp _εpij þ ε20

� �
, where

ε0 is a very small number. This technique is also used in our algorithm.

By using the static approach and the criterion of the mean, Nguyen Dang and König [18]

showed that the shakedown solution can be obtained by a maximization or a minimization

problem. The yield criterion of the mean was further applied in practical computations by

displacement method and equilibrium finite element by Nguyen Dang and Palgen [19].

A very efficient primal-dual algorithm, which can derive lower and upper bound sim-

ultaneously of shakedown limit load factor for complicated structures, has been intro-

duced by Vu, Yan and Nguyen Dang [20-22] and Vu [23]. In these works, dual

relationship between upper bound and lower bound for shakedown analysis of perfectly

plastic structures has been proven. Theoretically speaking, primal-dual algorithm helps

to find a very accurate solution of shakedown analysis problem.

While using the finite element method (FEM) for limit and shakedown analysis, the

stress method can be used, but this method is restricted since for certain structures, it

is very difficult to find appropriate stress function, so the displacement method is pre-

ferred to make the numerical approach as general as possible.

For the structures with hardening material, it is difficult to prove the relationship between

upper bound and lower bound because of the complication of the objective function. Fur-

thermore, in the static approach, it is difficult to present alternating limit and ratcheting limit

separately. In this paper, we have presented a FEM-based upper bound algorithm for shake-

down analysis of bounded kinematic hardening structures with von Mises yield criterion. By

the direct plasticity methods, shakedown analysis is a nonlinear programming problem. The

present algorithm can deal with complicated realistic structures which are modelled by 3D,

20-node elements with huge number of degree of freedom. Two numerical examples are in-

cluded to validate the algorithm and to study the influence of hardening effect.

Methods
Bounded kinematic hardening model

For kinematic hardening model, the initial yield surface can translate in the multi-axial

stress space, without changing its shape and size. If the translation is unlimited, or in

other words, the ultimate strength of material σu is infinite, we have unbounded model

(Figure 1). This model is inadequate to predict the plastic collapse (both incremental

and instantaneous) of structure. It can only describe the alternating plasticity mode.

The initial yield surface for von Mises material is defined as below

F σ½ �−σ2
y ¼ 0: ð1Þ

The subsequent surface is defined as
F σ−π½ �−σ2y ¼ 0 ð2Þ
where π is the back stress. If hardening is unbounded, π is infinite.



Figure 1 Unbounded kinematic hardening model.
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For more realistic material, yield stress σy must be bounded by ultimate strength σu.

A simple two-surface model is used to model the bounded hardening. The subsequent

yield surface may or may not touch the fixed bounding surface; see Figure 2. This is

satisfied by one of the two following conditions:

1. Centre of subsequent yield surface cannot move outside the back-stress surface.

This is expressed by

F π½ �≤ σu−σy
� �2

: ð3Þ

2. Subsequent yield surface always stays inside bounding surface. This is expressed by
F σ½ �≤σ2u: ð4Þ
Figure 2 A simple two-surface plasticity with fixed bounding surface.
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In the preceding conditions, Equations 3 and 4, equalities occur when the subsequent

surface touches bounding surface. We have proven that bounding conditions (3) and

(4) are exactly equivalent. See detail in the study of Pham and Staat [24].

Shakedown formulation based on Koiter's theorem

Problem establishment

Upper bound solution of shakedown load multiplier is the solution of a constrained

nonlinear programming problem

αsd ¼ min
_εp

ZT
0

Z
V

Dp _εpð ÞdVdt að Þ

s:t: :

Δεp ¼
ZT
0

_εpdt bð Þ

tr _εpð Þ ¼ 0 cð Þ
Δεp ¼ 1

2 ∇ Δuð Þ þ ∇ Δuð ÞT
� �

in V dð Þ

Δu ¼ 0 on ∂Vu eð ÞZT
0

Z
V

σE x; tð Þ : _εpdVdt ¼ 1 gð Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5Þ

where total plastic energy dissipation Dp _εpð Þ in the structure is as follows:

ZT
0

Z
V

Dp _εpð ÞdVdt ¼
ZT
0

Z
V

ffiffi
2
3

r
σy _εpk kdVdt þ

Z
V

ffiffi
2
3

r
σu−σy
� �

Δεpk kdV ð6Þ

The first term in the right hand side of Equation 6 is plastic energy dissipation of per-

fect plasticity material, and the second term is hardening effect. Evidently, if σu = σy, we

have ideal plastic material.

Constraint (5b) is the definition of plastic strain accumulation. The plastic strain rate

_εp may not necessarily be compatible, but Δεp must be compatible. This is expressed

by constraints (5d) and (5e). Constraint (5c) is the incompressibility condition, and (5g)

is the normalized condition.

Problem discretization

Based on FEM, whole structure V is discretized into ne finite elements with NG =

ne × ng Gaussian points, where ng is number of Gaussian points in each element. If

the load domain L is convex, it is sufficient to check if shakedown will happen at

all vertices of L. So the load domain can be discretized into finite number of load

combinations P̂k , k = 1,…,m, and m is total number of vertices of L. By these dis-

cretizations, the shakedown analysis is reduced to checking shakedown conditions

at all Gaussian points and all load vertices m, instead of checking for whole
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structure V and entire load domain L . Then, numerical form of Equation 5 is as

follows:

αblkhsd ¼ min
_εp

ffiffi
2
3

p
σy
Xm
k¼1

XNG

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
i ε

T
ikDεik þ w2

i ε
2
0

q
þ ffiffi

2
3

p
σu−σy
� �XNG

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
i

Xm
k¼1

εTikD
Xm
k¼1

εik þ w2
i ε

2
0

s( )
að Þ

s:t: :Xm
k¼1

εik ¼ Biu ∀i ¼ 1;NG
�

bð Þ
DMεik ¼ 0 ∀i ¼ 1;NG

�
∀k ¼ 1;m
�

cð ÞXm
k¼1

XNG

i¼1

wiε
T
ikσ

E
ik ¼ 1 dð Þ

8>>>>><
>>>>>:

ð7Þ

where αblkhsd denotes the shakedown multiplier in bounded linearly kinematic hardening.

εik is the strain vector corresponding to load vertex k at Gaussian point i

εik ¼ εik11 εik22 εik33 2εik12 2εik23 2εik13
� �T

¼ εik11 εik22 εik33 γ ik12 γik23 γ ik13
� �T

:
ð8Þ

σE
ik is the fictitious elastic stress vector corresponding to load vertex k at Gaussian

point i, u is the nodal displacement vector, Bi is the deformation matrix and ε0 is the

small number to avoid singularity. D and DM are square matrices, expressed in

Equation 9:

D ¼ Diag 1 1 1
1
2

1
2

1
2

	 

; DM ¼

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775
: ð9Þ

For the sake of simplicity, we define some new plastic strain eik, fictitious elastic

stress tik, deformation matrix B̂i, respectively as

eik ¼ wiD
1=2εik ; tik ¼ D

−1=2σE
ik ; B̂i ¼ wiD

1=2Bi: ð10Þ

Then Equation (7) becomes
αblkhsd ¼
ffiffi
2
3

p
σy min _e ik

Xm
k¼1

XNG
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ ε2

q
þ a
XNG
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

eTik
Xm
k¼1

eik þ ε2

s( )
að Þ

s:t: :

Xm
k¼1

eik ¼ B̂iu ∀i ¼ 1;NG
�

bð Þ
1
3
DMeik ¼ 0 ∀i ¼ 1;NG

�
∀k ¼ 1;m
�

cð Þ
Xm
k¼1

XNG
i¼1

eTiktik ¼ 1 dð Þ

8>>>>>>><
>>>>>>>:

ð11Þ

where

a ¼ σu−σy
� �

=σy: ð12Þ

to solve problem (11), using penalty function method for constraints (11b) and

(11c), combined with Lagrange multiplier method for constraint (11d). Penalty
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function FP and Lagrange function FPL are expressed in Equations 13 and 14,

respectively.

FP ¼
XNG

i¼1

(Xm
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ ε2

q
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

eTik
Xm
k¼1

eik þ ε2

s

þ c
2

Xm
k¼1

eTikDMeik þ c
2

Xm
k¼1

eik−B̂iu

 !T Xm
k¼1

_eik−B̂iu

 !)

s:t: :

Xm
k¼1

XNG

i¼1

eTiktik ¼ 1

ð13Þ

FPL ¼
XNG

i¼1

(
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

eTik
Xm
k¼1

eik þ ε2

s
þ
Xm
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ ε2

q

þ c
2

Xm
k¼1

eTikDMeik þ c
2

Xm
k¼1

eik−B̂iu

 !T Xm
k¼1

eik−B̂iu

 !)
þ α

Xm
k¼1

XNG

i¼1

eTiktik−1

 !

ð14Þ

Algorithm

Step 1: Choose starting point: displacement and strain vectors u0 and e0 such that the

normalized condition (11d) is satisfied:

XNG

i¼1

Xm
k¼1

tTike
0
ik ¼ 1 ð15Þ

Step 2: Calculate du, deik, (α + dα) from current values of u, e
du ¼ −uþ ~S−1~f 1
� �þ αþ dαð Þ~S−1~f 2

deik ¼ ~M−1
ik NikQ−1

i

Xm
k¼1

~M−1
ik − ~M−1

ik

 !
β1 þ αþ dαð Þ ~M−1

ik NikQ−1
i

Xm
k¼1

~M−1
ik − ~M−1

ik

 !
β2

8><
>:

ð16Þ
where

~S ¼
XNG

i¼1

B̂T
i
~EiB̂i ð17Þ

~f 1 ¼
XNG

i¼1

B̂T
i
~Ei

Xm
k¼1

eik−
XNG

i¼1

B̂T
i Q

−1
i

Xm
k¼1

~M−1
ik a

Xm
k¼1

eik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_eTikeik þ ε2

q
þ eik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

eTik
Xm
k¼1

eik þ ε2

s !

−
XNG

i¼1

B̂T
i Q

−1
i

Xm
k¼1

~M−1
ik cbikDMeik

ð18Þ

~f 2 ¼ −
XNG

i¼1

B̂T
i Q

−1
i

Xm
k¼1

~M−1
ik tikbik ð19Þ

~Ei ¼ Ii−cQ−1
i

Xm
k¼1

bik ~M−1
ik

 !
ð20Þ
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Qi ¼ Ii þ
Xm
k¼1

~M−1
ik Nik ð21Þ

~Mik≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

eTik
Xm
k¼1

eik þ ε2

s
Iik þ cbikDM

 !
ð22Þ

Nik≈ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ ε2

q
þ cbik

� �
Iik ð23Þ

bik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

eTik
Xm
k¼1

eik þ ε2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ ε2

q
ð24Þ

β1 ¼ a
Xm
k¼1

eik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ ε2

q
þ eik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

eTik
Xm
k¼1

eik þ ε2

s
þ cDMeikbik

þ c
Xm
k¼1

eik−B̂iu

 !
bik−cbikB̂idu1 ð25Þ

β2 ¼ tik−cB̂idu2
� � ð26Þ

αþ dαð Þ ¼
1−
XNG

i¼1

Xm
k¼1

tTik eik þ deikð Þ1
� �

XNG

i¼1

Xm
k¼1

tTik deikð Þ2
¼ −

XNG

i¼1

Xm
k¼1

tTik deikð Þ1
XNG

i¼1

Xm
k¼1

tTik deikð Þ2
ð27Þ

Step 3: Perform a line search to find λu such that

λu ¼ FP uþ λdu; eþ λdeð Þ→min ð28Þ

Update displacement u, plastic strain eik
u ¼ uþ λudu að Þ
eik ¼ eik þ λudeik bð Þ ð29Þ

Step 4: Check convergence criteria: if they are all satisfied, then stop; otherwise go to
step 2.
Figure 3 Continuous beam.



Figure 4 Load domain for example 4.1.
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Results and discussions
Two examples are reported. To compare the results on shakedown limit for perfectly

plastic materials with other researches, we choose σu = σy. To investigate the effect of

bounded hardening, we choose σy < σu < 2σy. When σu ≥ 2σy, we have unbounded kine-

matic hardening model.
Continuous beam

The continuous steel beam is described in Figure 3 subjected to uniform distributed

loads: p1 and P2 vary independently in the domain: p1 ∈ [1.2, 2], p2 ∈ [0, 1]. The load

domain is described in Figure 4.

The material mechanical properties are Young's modulus, E = 1.8 ⋅ 105 N/mm2; yield

stress, σy = 100 N/mm2; ultimate strength, σu = 1.35σy and Poisson's ratio, ν = 0.3. By the

symmetry of the problem, only half of the structure is discretized into 589 elements, 8-node

quadrangle, Figure 5. The structure is considered as a plane stress problem. Numerical limit

and shakedown analysis for this structure made of perfectly plastic material were presented

in Garcea et al. [25] and Tran et al. [26].

Table 1 shows the results of limit and shakedown analysis. Present results are close to

others in literature.

Interaction diagram of shakedown load multiplier is plotted in Figure 6. In this struc-

ture, when p2 is not very large, the structure fails in ratcheting mode, and benefit of

hardening is quite clear.
Cylindrical pipe under complex loading

This closed-end pipe is investigated for perfectly plastic material in Vu [23] using

primal-dual shakedown algorithm. The structure is subjected to bending Mb and
Figure 5 FEM mesh.



Table 1 Comparison of plastic limit collapse and shakedown results

Limit Shakedown

Author [p1, p2] = [2.0, 0.0] [p1, p2] = [0.0, 1.0] [p1, p2] = [1.2, 1.0] [p1, p2] = [2.0, 1.0]
p1∈ 1:2;2½ �
p2∈ 0;1½ �

Garcea et al. [25] 3.280 8.718 5.467 3.280 3.244

Tran et al. [26] 3.402 9.192 5.720 3.388 3.377

Present (perfectly
plastic)

3.300 8.744 5.500 3.300 3.264

Present (kin.
hardening)

4.455 11.804 7.425 4.455 4.406
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torsion Mt moments, internal pressure p and axial tension T. Material properties are

Young's modulus, E = 2.1 ⋅ 105 N/mm2; yield stress, σy = 160 N/mm2; ultimate strength,

σu = 1.25σy and Poisson's ratio, ν = 0.3. Using 20-node 3D elements to model whole

structure with the dimensions: length L = 2, 700 mm, mean radius r = 300 mm and

thickness h = 60 mm, see Figure 7.

The analytical solutions of plastic collapse limit for cylindrical pipe under complex

loading can be cited from Vu [23].

Pure bending capacity:

Mb lim ¼ 4σyh r2 þ h2

12

� �
¼ 3647:52⋅106 Nmm: ð30Þ

Pure torsion capacity:
Mt lim ¼ 2ffiffiffi
3

p πr2hσy ¼ 3134:24⋅106 Nmm: ð31Þ

Pure tension capacity:
T lim ¼ 2πrhσy ¼ 18095573:6 N: ð32Þ

Pure internal pressure capacity:
plim ¼ σy
h
r
¼ 32 N=mm2 ð33Þ
Figure 6 Interaction diagram for shakedown bounds of continuous beam. The results are
not normalized.



Figure 7 FEM mesh of cylindrical pipe.
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and the normalized load multiplier when bending, internal pressure and tension are

combined is as follows:

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4−3n2φ

q
2

cos
nφ−2nxffiffiffiffiffiffiffiffiffiffiffiffiffi
4−3n2φ

q π

2

2
64

3
75; ð34Þ

where

m ¼ M=Mb lim

nφ ¼ p=plim
nx ¼ T=T lim

:

8<
: ð35Þ

If the axial tension force comes from only internal pressure on closed ends, then
nx = nφ/2, and formula (35) can be rewritten as

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4−3n2φ

q
2

ð36Þ

FE analysis is fulfilled for structure subjected to combined internal pressure p and
bending Mb. Results are presented in Table 2, normalized by pure bending capacity in
Table 2 Limit and shakedown load multipliers of cylindrical pipe subjected to internal
pressure and bending

Load combination Elastic
factor

Limit factor
(perfectly
plastic)

Shakedown
factor (perfectly

plastic)

Shakedown
factor (bounded

hardening)

Shakedown factor
(unbounded
hardening)

0.0p_1.0 M 0.7338 1.0012 0.7338 0.7338 0.7338

0.2p_1.0 M 0.7228 0.9870 0.7297 0.7310 0.7304

0.4p_1.0 M 0.7011 0.9478 0.7228 0.7236 0.7231

0.6p_1.0 M 0.6570 0.8914 0.7131 0.7132 0.7134

0.8p_1.0 M 0.6023 0.8267 0.7011 0.7013 0.7014

1.0p_1.0 M 0.5509 0.7608 0.6667 0.6855 0.6853

1.0p_0.8 M 0.6168 0.8540 0.7696 0.8128 0.8127

1.0p_0.6 M 0.6921 0.9556 0.8906 0.9894 0.9894

1.0p_0.4 M 0.7727 1.0546 1.0179 1.2318 1.2346

1.0p_0.2 M 0.8486 1.1306 1.1204 1.3874 1.5506

1.0p_0.0 M 0.9019 1.1589 1.1586 1.4482 1.8091



Figure 8 Interaction diagram for limit bounds. Comparison between analytical and numerical solutions.
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formula (28) and pure internal pressure in formula (33). Limit analysis is implemented

for σu/σy = 1.0 to be compared to formula (36), and interaction diagram is plotted in

Figure 8. Shakedown analysis with and without hardening effect is implemented for the

load domain: p ∈ [0, 1];Mb ∈ [−1, 1]. Interaction diagram is plotted in Figure 9.

Figure 8 shows that the present results of limit analysis for σu/σy = 1 are close to ana-

lytical solutions. Figure 9 shows that the hardening effect is clear if the applied moment

is less than 0.5Mb lim. If σu ≥ 2σy, bounded hardening model becomes unbounded, and

shakedown limit of structure cannot exceed two times of elastic limit.
Conclusions
The paper developed a new upper bound algorithm for shakedown analysis of elastic

plastic-bounded linearly kinematic hardening structures. This is an efficient tool for prac-

tical computation, especially for complicated structures subject to mechanical loads.
Figure 9 Interaction diagram for elastic and shakedown bounds, normalized by pure plastic
collapse limits, Mb lim and plim.



Phạm and Staat Asia Pacific Journal on Computational Engineering 2014, 1:4 Page 12 of 13
http://www.apjcen.com/content/1/1/4
The proposed algorithm gives results that are close to the results in literatures. If σu = σy,

it leads to perfectly plastic material; if σu ≥ 2σy, it leads to unbounded kinematic hardening

material; otherwise, σy < σu < 2σy, we have bounded kinematic hardening material.

Let αel; α
pp
sd ; and αblkhsd denote respectively elastic limit, shakedown limit for elastic per-

fectly plastic and shakedown limit for bounded kinematic hardening material, respect-

ively, then:

αppsd ≤ αblkhsd ≤
σu
σy

αppsd≤2αel:

In the preceding expression, the left equality occurs if the subsequent yield surface
translates inside the bounding surface, the middle equality occurs if the subsequent

yield surface fixed on the bounding surface and the last equality occurs when yield sur-

face translates unboundedly. If the structure shakes down in alternating plasticity

mode, then there is no difference between perfectly plastic and kinematic hardening

models.
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