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Abstract

In this work, a full-field finite element simulation of a heterogeneous DC04 steel
microstructure identified from two-dimensional (2D) electron backscatter diffraction
(EBSD) data is performed under a macroscopic tensile deformation. After discretization
procedure by finite elements, the EBSD microstructure is subjected to homogeneous
displacement boundary conditions approximately describing a large strain uniaxial
tensile test. A crystal plasticity model applied on integration points of FE method is
used to simulate the deformation behavior and the grain orientation evolution. The
simulated grain orientation fields are compared to experimental measurements of the
specimen after the tensile test at different deformation levels.

Background
Most of the metals used in industrial processes are polycrystalline materials. They are
aggregates of approximately single crystals in grains with different crystal orientations.
The anisotropic plasticity of polycrystalline materials is mainly caused by non-uniform
distributions of crystal orientations [1]. Therefore, the analysis of the crystallographic
texture, i.e., preferred crystal orientations, plays an important role when investigating
the macroscopic material behavior. Crystallographic texture data allow for the character-
ization and prediction of the anisotropic plasticity in heterogeneous materials by using
statistical models. Some representative studies of different polycrystalline materials with
focus on the texture evolution are given, e.g., by [2-10]. In the intensive increase of com-
puter powerful tool, modelling and simulation have contributed to predict themechanical
behavior and to facilitate the material design with particular properties. This issue often
requires a computational framework based on the linking between the constitutive law
describing physical phenomenon and the experimental information at the mesoscopic
and microscopic level. The experimental electron backscatter diffraction (EBSD) tech-
nique, known as scanning electron microscope (SEM)-based technique, has become a
major tool in measuring crystal orientations from a polycrystalline structure. A common
application is the use of orientation data at every Gauss integration point in finite ele-
ment (FE) simulations of crystal plasticity models. Hence, a grain scale simulation of the
polycrystalline structure could be performed to describe the grain orientation evolution.
In this paper, a heat-treated DC04 steel microstructure identified from two-dimensional

(2D) EBSD data is considered. A grain structure model is constructed based on the DC04

© 2014 Phan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

mailto:phanvantung@dtu.edu.vn
http://creativecommons.org/licenses/by/2.0


Phan Asia Pacific Journal on Computational Engineering 2014, 1:10 Page 2 of 24
http://www.apjcen.com/1/1/10

steel microstructure identified by a Matlab toolboxMTEX. After discretized by finite ele-
ments with one element over thickness, a grain scale simulation of the polycrystalline
DC04 steel sample cut from a tensile specimen is performedwithin the finite strain crystal
plasticity framework. The crystal plasticity model accounting for specified grain orienta-
tions is applied at Gauss integration points of finite elements of the corresponding grains
simultaneously. The experimentally observed local grain orientations and reorientations
in the polycrystalline sample will be predicted and evaluated at different deformation
states. Subsequently, the simulated grain reorientation fields are compared to experi-
mental measurements of the DC04 sample after the tensile test at different deformation
levels.
Notation. Throughout the text, a second-order tensor and a fourth-order tensor are

A = Aijei ⊗ ej and A = Aijklei ⊗ ej ⊗ ek ⊗ el, respectively, where {ei} represents an
orthonormal basis of the three-dimensional (3D) Euclidean space. Symmetric and trace-
less tensors are designated by a prime, e.g., A′. The set of proper orthogonal second-order
tensors is specified by SO(3). The scalar product, the dyadic product, and the Frobe-
nius norm are denoted by A · B = tr(A�B) = tr(AB�), A ⊗ B, and ‖A‖ = (A · A)1/2,
respectively. Here, tr(·) represents the trace of a second-order tensor. A linear mapping of
second-order tensors is written as A = C[B].

Methods
The first subsection introduces the constitutive equations of a crystal plasticity mate-
rial model applied at Gauss integration points of FE model. The constitutive model is
described via an ABAQUS user subroutine UMAT allowing to define the mechanical
behavior of material. The EBSD measurement technique to obtain the crystallographic
texture data set is discussed in the second subsection. By using this experimental EBSD
technique, the different EBSD data sets representing the deformation states of a tensile
specimen of the heat-treated DC04 steel are shown. In addition, a Matlab toolbox MTEX
allowing to import the EBSD data formats and to obtain an image of the grain structure
is introduced. In the third subsection, the microstructural image of the tensile specimen
at the initial state is discretized by finite elements. The FE mesh is used as an input data
for performing crystal plasticity simulations on the grain scale into the ABAQUS/CAE
software.

Constitutive model on a single crystal

Elastic law

An elastoviscoplastic constitutive model on a single crystal is introduced. The model is
described in the context of large strain theory. Conceptually, the model is relied on the
assumption of small elastic strains, finite plastic strains, and rotations. Plastic deforma-
tion is assumed to be the result from distinct slip mechanisms on specific crystallographic
planes. The theory was developed in the works of [2,4]. The deformation gradient is
decomposed multiplicatively into an elastic part Fe and a plastic part Fp [11,12]

F = FeFp. (1)

The plastic deformation Fp is the plastic contribution from crystallographic slips. The
elastic deformation Fe accounts for the lattice distortion, which is inherently elastic. As
the elastic strains are assumed to be small, a linearized relation between a conjugate pair
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of stress and strain measures is applicable for the description of the elastic behavior. Here,
the elastic law is assumed to be given by

τ = FeC̃[Ee]FT
e . (2)

The Kirchhoff stress tensor is given by τ = det(F)σ , with σ being the Cauchy stress
tensor. Green’s strain tensor is defined by

Ee = (Ce − I)/2, (3)

with I being the second-order unit tensor and the right (elastic) Cauchy-Green tensor

Ce = FT
e Fe. (4)

The reference stiffness tensor C̃ with respect to the orthonormal basis Bα is given by

C̃ = C̃αβBα ⊗ Bβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1122 0 0 0
C1111 C1122 0 0 0

C1111 0 0 0
2C1212 0 0

sym. 2C1212 0
2C1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bα ⊗ Bβ . (5)

The components C̃αβ are defined by C̃αβ = Bα · C̃[
Bβ

]
. The orthonormal base tensors

Bα used are given by [13]. Due to the cubic material under consideration, the stiffness
tensor C̃ has three independent elastic constants.

Flow rule and hardening law

A rate-dependent flow rule specifies the time evolution of the plastic part Fp of F

ḞpF−1
p =

∑
α

γ̇αM̃α , γ̇α = γ̇0sgn (τα)

∣∣∣ τα

τC

∣∣∣m, (6)

where the exponentm quantifies the strain rate sensitivity of thematerial, γ̇0 is a reference
rate, and M̃α is the Schmid tensor. τC denotes the critical resolved shear stress. A rate-
dependent Kocks-Mecking hardening model see, e.g., [7,14]

τ̇C
(
τα , τC

)
= �0

(
1 − τC

τCV
(
τα , τC

)
)

γ̇
(
τα , τC

)
(7)

is used, where the critical Voce stress is specified by

τCV

(
τα , τC

)
= τCV0

(
γ̇

(
τα , τC

)
γ̇0

) 1
n

(8)

with the asymptotic critical resolved shear stress τCV0 and the initial hardening modulus
�0. The rate of the accumulated plastic slip is computed by

γ̇ =
∑
α

∣∣∣γ̇α

(
τα , τC

)∣∣∣ . (9)

The resolved shear stress is defined by

τα = T ′
e · M̃α , (10)

where

Te = CeS2PKe (11)
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denotes the Mandel stress tensor. The second Piola-Kirchhoff in the undistorted state
is given by S2PKe = JF−1

e τF−�
e . J = det(Fe) is the determinant of Fe. The Schmid or slip

system tensors are rank-one tensors, which are defined in terms of the slip direction d̃α

and slip plane normal ñα in the undistorted configuration

M̃α = d̃α ⊗ ñα . (12)

The initial conditions for the ordinary differential equation are Fe(0) = Q(t = 0) ∈ SO(3)
and the initial critical resolved shear stress τC(0) = τC0 . The crystal orientation is given
by a proper orthogonal tensor Q(t) = gi(t) ⊗ ei, where the vectors gi and ei denote the
orthonormal lattice vectors and the fixed orthonormal basis, respectively. The initial ori-
entation of the single crystalQ(t = 0) = gi(0) ⊗ ei is defined in terms of the orthonormal
lattice vectors gi(0) at the time t = 0. As shown in [15], intrinsic characteristics of body-
centered cubic (BCC) crystals are revealed by using a proper parameter identification
method. The authors applied a BCC crystal plasticity model to perform uniaxial ten-
sion simulations at the material point level for different types of BCC single crystals and
compare these with experiments. The results indicate that {110} and {112} planes are
identified as intrinsic slip systems of BCC crystals, but not the {123} plane. Therefore,
in this work, the attention is focused on a combination of {110}〈111〉 and {112}〈111〉 slip
system families (Figure 1). There are two slip directions in each of the slip planes along
the main diagonals of the cube. In total, there are 24 slip systems shown in Tables 1 and 2.

Experimental identification based on EBSD data of DC04 steel tensile samples

EBSDmeasurement

In recent years, EBSD has become an important technique for the quantitative character-
ization of different microstructural properties such as the grain size, the grain boundary
structure, and the orientation distribution (see, e.g., [17-19]). The main objective of the
technique is to obtain spatially resolved crystallographic information by a SEM. For every
point analyzed on a sample, the position, the phase, and the orientation information are
stored. The stored data set is a database of measurements produced by scanning the beam
in a regular grid over the sample. The data format is shown in Figure 2 (left) for the
microstructure sample of the mentioned DC04 steel at the initial state. Each row is a mea-
surement point in themap, and each column is one of the several measured parameters. In
the first column, each match unit contains the information necessary to model the EBSD
pattern produced by the expected phase in the sample. The phase values 1 indicate the
expected phases of ferrite, while the phase values 0 correspond to measurement errors.

Figure 1 BCC slip systems of the unit cell (cubic crystal).
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Table 1 12 BCC slip systems of {110}〈111〉 [16]
Slip system (α)

1 2 3 4 5 6√
2
[
ñα
i

]
[1,−1, 0] [1,−1, 0] [1, 0,−1] [1, 0,−1] [0, 1,−1] [0, 1,−1]√

3
[
d̃α
i

]
[1, 1, 1] [1, 1,−1] [1, 1, 1] [1,−1, 1] [1, 1, 1] [−1, 1, 1]

7 8 9 10 11 12√
2
[
ñα
i

]
[1, 1, 0] [1, 1, 0] [1, 0, 1] [1, 0, 1] [0, 1, 1] [0, 1, 1]√

3
[
d̃α
i

]
[−1, 1, 1] [1,−1, 1] [−1, 1, 1] [1, 1,−1] [1,−1, 1] [1, 1,−1]

The second and third column are the X and Y positions of the measurement points. Their
dimensional unit is micrometer [μm]. The rotation is commonly parameterized by a triple
of Euler angles φ1,�,φ2 and is described through a 3 × 3 orthogonal matrix given by

Qij =
⎡
⎢⎣
cosφ1 −sinφ1 0
sinφ1 cosφ1 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣
1 0 0
0 cos� −sin�

0 sin� cos�

⎤
⎥⎦

⎡
⎢⎣
cosφ2 −sinφ2 0
sinφ2 cosφ2 0
0 0 1

⎤
⎥⎦ (13)

=
⎡
⎢⎣
cosφ1cosφ2 − sinφ1cos�sinφ2 −cosφ1sinφ2 − sinφ1cos�cosφ2 sin�sinφ1
sinφ1cosφ2 + cosφ1cos�sinφ2 −sinφ1sinφ2 + cosφ1cos�cosφ2 −sin�cosφ1

sin�sinφ2 sin�cosφ2 cos�

⎤
⎥⎦ ,

(14)

where the three Euler angles φ1,�, and φ2, shown schematically [20] in Figure 2 (right),
are used to describe the crystallographic orientation of the crystals in relation to a ref-
erence coordinate system. In the database, these three Euler angles are recorded in the
fourth, fifth, and sixth columns, respectively. The other parameters are neglected for the
consideration.

Identification ofmicrostructures and orientation information

An experimental tensile specimen of heat-treated low-carbonDC04 steel [21] is discussed
here. The specimen geometry is width w = 5 mm, gauge length L0 = 15 mm, and thick-
ness t = 1 mm. From such specimen, a tiny sample was cut by laser rays with the same
thickness. Through the EBSD technique in the scanning electron microscope, an initial
raw database of such a sample is obtained.
Recently, a software package MTEX [22,23], a Matlab toolbox developed since 1997, is

used for the quantitative analysis of experimental textures. The obtained EBSD database
has been processed by MTEX to identify the grains and their boundaries. The EBSD
sample database is then imported into the MTEX toolbox to identify the corresponding

Table 2 12 BCC slip systems of {112}〈111〉 [15]
Slip system (α)

1 2 3 4 5 6√
6
[
ñα
i

]
[1, 1, 2] [−1, 1, 2] [1,−1, 2] [1, 1,−2] [1, 2, 1] [−1, 2, 1]√

3
[
d̃α
i

]
[1, 1,−1] [1,−1, 1] [−1, 1, 1] [1, 1, 1] [1,−1, 1] [1, 1,−1]

7 8 9 10 11 12√
6
[
ñα
i

]
[1,−2, 1] [1, 2,−1] [2, 1, 1] [−2, 1, 1] [2,−1, 1] [2, 1,−1]√

3
[
d̃α
i

]
[1, 1, 1] [−1, 1, 1] [−1, 1, 1] [1, 1, 1] [1, 1,−1] [1,−1, 1]
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Figure 2 The file format and Euler angles. File format of the raw EBSD data set of the experimental sample
at the initial state including 105,000 rows and 7 columns (left) and definition of Euler angles (right).

microstructure. Figure 3 shows an EBSD sample microstructure considered at the initial
state. A strain rate of 10−3 s−1 is applied to the tensile specimen in loading direction. Dur-
ing the tensile test, several EBSD databases have been determined experimentally, and
thereby, the evolution of the crystallographic texture is measured at different elongation
states (5%, 10%, 15%, and 20%).
By using the MTEX toolbox, these raw EBSD databases are imported to obtain 2D

images of grain structures. Two microstructural images of both the raw EBSD data and
the clustered EBSD data are shown in Figure 4a,b, repectively, for the initial state of the
sample. The grains consisting only of 1 pixel are eliminated in the clustering process of
the MTEX toolbox. A clustered EBSD database which consists of identified grains and
corresponding point sets is obtained. This database represents the X and Y positions (in
μm) and three Euler angles (in degree) of the measurement points. In addition, the grain

Figure 3 A rawmicrostructural image of the tiny DC04 steel sample. Raw EBSD microstructural image of
a heterogeneous sample cut parallel to rolling direction from a DC04 steel specimen at the initial state. RD,
rolling direction; TD, transverse direction. (For interpretation of the references to color in the text, the reader
is referred to the web version of the article).
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(a) (b)

Figure 4 Microstructural images at the initial state. (a) Raw EBSD data set. (b) Clustered EBSD data set.

to which the measurement points belong is indicated in the database. The order number-
ing of grains and the identification of 574 grains are shown in Figure 5 at the initial state.
Additionally, 2D images of the raw EBSD data at different strain states (5%, 10%, 15%, and
20%) are shown in Figure 6. In all microstructural images, each color indicates the lattice
orientation in each grain at different states.

Figure 5 Identification and numbering of grains. Identification and numbering of 574 grains in the
microstructural image of clustered data set at the initial state.
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(a) (b)

(c) (d)

Figure 6 Microstructural images of raw EBSD data sets at different states. (a) 5% elongation. (b) 10%
elongation. (c) 15% elongation. (d) 20% elongation.

Some conclusive descriptions of the raw EBSD data are summarized. In the raw EBSD
database of the initial state, the total number of columns and rows is 7 and 105,000,
respectively. After neglecting measurement errors, in such an EBSD database remain
103,671 rows (or the number of pixels) and 7 columns. The number of measurement
errors is 1,329 pixels, i.e., approximately 1.26% of the area fraction. The map size of the
raw grain structure in Figure 4a is 349 × 299 μm. The area of one measurement point
is 1 μm2. For the subsequent strain states, the measurement errors correspond to area
fractions of 3.6%, 8.5%, 9.4%, and 18.5%, respectively.

FE modeling and full-field simulation

In this subsection, the microstructural image of the tensile specimen at the initial state
shown in Figure 7 (left) is used as input data for performing crystal plasticity simulations
on the grain scale. The sample picture is imported into a commercial software Simpleware
to construct a computable grain structure model as shown in Figure 7 (right). Simple-
ware offers two important options for processing and meshing 2D or 3D image data. The
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Figure 7 Microstructural image of the tensile specimen at the initial state.Microstructure of
heat-treated DC04 steel at the initial state obtained from the clustering process by MTEX toolbox (left) and a
microstructure including complete grains constructed by Simpleware software (right).

Figure 8 FE model of the microstructure at the initial state.
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(a)

(c)

(b)

(d)

Figure 9 Stress-strain curves in comparison to experimental curves.Numerically determined stress-strain
curves in comparison to experimental curves of the Institute of Forming Technology and Lightweight IUL (TU
Dortmund University) for different angles to RD [25]. (a) 0° to RD. (b) 30° to RD. (c) 60° to RD. (d) 90° to RD.

first one is ScanIP, which is the platform for the image processing, and the second one
is ScanFE, which is a fully integrated meshing module for the conversion of masks (or
grains) to 2D or 3D FE meshes. The type of elements used in the FE mesh are linear and
quadratic hexahedral elements. Details of the software can be found in [24]. Note that
the color distribution of grains in Figure 7 (left) is not equal to the one in Figure 7 (right)
due to the different conventions of colors between the MTEX and Simpleware software.
After the processing steps in ScanIP, a FE output data containing the set of nodes, the set
of hexahedral elements, and the set of tetrahedral elements is obtained. The data can be
exported in the ABAQUS format with the FE mesh shown in Figure 8. Different colors
indicate different crystal orientations of the grains. The white region around the grains

Figure 10 Initial grain orientations in the 3D (left) and 2D (right) fundamental zone φ2 − �.
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Figure 11 Initial Euler angle distribution [°] in the FE simulation. (a) Angle φ1, (b) angle �, and (c) angle
φ2 in the fundamental zone.

was assumed to show an ideal behavior according to the von Mises plasticity model.
The elastic properties of steel with Young’s modulus (E = 200 GPa) and Poisson’s ratio
(ν = 0.3) are assigned to the ideal von Mises plastic region. For the plastic behavior, the
flow parameters σF0 = 180 MPa, σF∞ = 303 MPa, describing the linear hardening, are
estimated from the experimental tensile stress-strain curve for 0° to the RD (Figure 9a).
In order to uniquely define the evolution of grains during the FE simulation, initial Euler

angles of 45 chosen complete grains are transformed into the cubic fundamental zone.
The triple of Euler angles restricted in the cubic fundamental zone is given by

Figure 12 Location and enlargement of three local grains. Location of three selected local grains in the
microstructural image (left). Enlargement of three local grains: #296, #345, and #357 (right).



Phan Asia Pacific Journal on Computational Engineering 2014, 1:10 Page 12 of 24
http://www.apjcen.com/1/1/10

(a)

(c)

(b)

Figure 13 Initial Euler angles of three selected local grains. Using a local analysis for the reduced
experiment data set, the initial Euler angles of three selected local grains are as follows: (a) angle φ1, (b)
angle �, and (c) angle φ2 in the fundamental zone. The unit of Euler angles is [°].

Figure 14 Initial Euler angles [°] of three local grains in the FE simulation. (a) Angle φ1, (b) angle �, and
(c) angle φ2 in the fundamental zone.
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Table 3 Set of material parameters

Value

Elastic constants of DC04 steel [27]

C1111[GPa] 231.5

C1122[GPa] 135.0

C1212[GPa] 116.0

Material parameters for flow and hardening rule [25]

τC0 [MPa] 67 ± 6

τCV0[MPa] 130 ± 3

�0[MPa] 755 ± 105

m 20

γ̇0
[
s−1

]
0.001

n 5

φ1 ∈ [0, 2π) (15)

� ∈ [
f (φ2) ,π/2

]
(16)

φ2 ∈ [0,π/4) (17)

f (φ2) = arccos
(

cos (φ2)√
1 + cos (φ2)

2

)
. (18)

The detailed explanation of the fundamental zone could be found in [10,26]. In
Figure 10, the initial crystal orientations of the grains transformed in the fundamental
zone are shown. In FE simulation, initial Euler angles of the aforementioned 45 grains
are depicted in Figure 11. For the comparison about the grain orientation and reorien-
tation between simulated results and experimental results, three local grains are chosen.
Figure 12 shows the location of three local grains and their enlargement in the experimen-
tal microstructure. The experimental identification of three initial Euler angles of these
three local grains is shown in Figure 13 after transformed in the fundamental zone. It can
be seen that the initial Euler angles of these local grains are explicitly shown in the FE sim-
ulation (Figure 14) when compared to the identified experimental ones in the same scale
color (RGB). The simulation is carried out by using the implicit Euler scheme for time
integration and the user subroutine UMAT defining the constitutive law of the crystals
introduced in the first subsection. The material parameters shown in Table 3 are used for

Figure 15 Reference coordinate system of microstructural sample. ND, normal direction; RD, rolling
direction; TD, transverse direction.
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Figure 16 Distribution of critical resolved shear stress [MPa] of the grain structure at different states.
(a) 5%, (b) 10%, (c) 15%, and (d) 20% elongation.

performing the grain scale simulation. The set of these material parameters are identified
by [25] by using tensile stress-strain curves at different angles to RD. The stress-strain
curves are shown in Figure 9. For the slip mechanism, the grain scale simulation accounts
for the combination of {110}〈111〉 + {112}〈111〉 slip systems.
Considering in the reference coordinate system of microstructural sample (Figure 15),

homogeneous displacement boundary conditions at the outer boundary of the RD-TD
plane are applied. The strain in the normal direction (ND) is assumed to be zero. Fur-
thermore, a plane strain state is assumed. The boundary conditions are defined by the
ABAQUS subroutine DISP. The displacement vector and the displacement gradient are
given by

u(X, t) = x − X (19)

and

H = Grad(u(X, t)), (20)

respectively, where X is the reference position of the material points and x = χκ(X, t) is
the current position at time t. The displacement gradient H can be given in terms of the
deformation gradient F

H = Grad (u(X, t)) = Grad (x) − I = F − I (21)
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Figure 17 Plastic slip on 12 slip systems {110}〈111〉 at 20% elongation. The unit is per second
[
s−1

]
.

assuming the constant velocity gradient for plane strain compression is given by

L = ε̇0

⎡
⎢⎢⎣

−1√
2 0 0
0 1√

2 0
0 0 0

⎤
⎥⎥⎦ ei ⊗ ej. (22)

The deformation gradient is given by the exponential form

F(t) = exp(Lt)F(0), (23)

with F(0) = I. The constant strain rate is set to ε̇0 = 10−3 s−1. The special form of the
velocity gradient implies a displacement in the X-Y plane in the reference configuration
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Figure 18 Plastic slip of 12 slip systems {112}〈111〉 at 20% elongation. The unit is per second
[
s−1

]
.

and a constant volume during the simulation. From Equation 20, the displacement on the
boundary is obtained

u(X, t) = HX = HF−1x. (24)

By combining this equation with Equation 21, the prescribed displacement is defined in
the subroutine DISP at the time t in terms of the deformation gradient in Equation 23, so
that the displacement becomes

u(X, t) = (
I − F−1) x. (25)

The total time in FE simulation is 260 s corresponding to 20% elongation. The FE results
are evaluated at different total times such as 65, 130, and 195 s corresponding to 5%, 10%,
and 15% elongation, respectively. The field of critical resolved shear stress τc is depicted in
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Figure 19 Microstructural images of local grains identified byMTEX at different states. (a) 5%, (b) 10%,
(c) 15%, and (d) 20% elongation.

Figure 16 at the aforementioned different states of the FE simulation. These results show
a strongly inhomogeneous field caused by the evolution of individual grain orientations
in the microstructure during deformation.
In addition, the plastic slip of each slip system α (α = 1 . . . 24) in BCC slip systems

{110}〈111〉 + {112}〈111〉 is computed by integrating the slip rate γ̇α over the time during
the grain scale simulation. The plastic slip is described as follows:

γα =
∫ t

0
|γ̇α| dt. (26)

Figures 17 and 18 represent the plastic slip in 24 slip systems at 20% elongation. It can
be seen that the grain structure shows a very heterogeneous state of slip.

Results and discussion
This section aims to perform a comparison between the numerical results and the exper-
imental data for three local grains. Numerical results at different tensile strains are
compared to the corresponding experimental results. In order to obtain Euler angles
and the reorientation in the three grains (Figure 19), post-processing steps have to be
carried out. Firstly, the measured grain data set at each different state of deformation
is transformed into the fundamental zone. Secondly, each triple of Euler angles of the
measurement points is extracted at different states of deformation. A comparison of
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(a) (b)

(c) (d)

(e) (f)

Figure 20 Comparison of Euler angles [°] between the experiment (left) and numerical results (right)
at 5% elongation state. (a, b) Angle φ1, (c, d) angle �, and (e, f) angle φ2.

Euler angles between the experiment and the FE simulation is shown in Figures 20,21,22
and 23. The evolution of Euler angles in the numerical simulation is quite close to the
experimental findings.
Thirdly, the reorientation of each measurement point is computed for each state of

deformation. The formula to compute the angle of reorientation is given by

ω =
∣∣∣∣∣arccos

(
trQQ�

0 − 1
2

)∣∣∣∣∣ , (27)

where Q0 represents the crystal orientation at the initial state of deformation and Q
represents the crystal orientation of the same point at different states of deformation.
Both Q0 and Q are parameterized by Euler angles lying in the same fundamental zone.
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(a) (b)

(c) (d)

(e) (f)

Figure 21 Comparison of Euler angles [°] between the experiment (left) and numerical results (right)
at 10% elongation state. (a, b) Angle φ1, (c, d) angle �, and (e, f) angle φ2 .

During the simulation, Q is extracted by the polar decomposition Fe = ReUe, where
Re = Q is the elastic rotation and Ue is the elastic stretch tensor. The computed reorien-
tation is the minimum relative orientation distance between the initial and actual crystal
orientation. By comparing the color distribution representing the values in the legend
(Figure 24), the reorientations in the numerical simulations agree well with the experi-
mental results. In addition, the computed reorientations of local grains #345 and #296 are
in good agreement with the experiment. However, the computed reorientation of local
grain #357 is lower than in the experiment. This can probably be explained by neglect-
ing the beneath grain interaction in the ND due to the lack of the experimental 2D EBSD
data.
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(a) (b)

(c) (d)

(e) (f)

Figure 22 Comparison of Euler angles [°] between the experiment (left) and numerical results (right)
at 15% elongation state. (a, b) Angle φ1, (c, d) angle �, and (e, f) angle φ2.

Conclusions
In the paper, a finite strain crystal plasticity model has been presented. The constitutive
equations applied on the grain scale to model the elasto-viscoplastic behavior of BCC
single crystals have been described in the context of large deformations. In particular, the
crystal plasticity model is rate dependent and takes into account hardening effects on the
microscale. Thematerial parameters of the DC04 steel used in the crystal plasticity model
were identified in the work of [25].
In addition, the experimental EBSD technique to obtain the microstructural informa-

tion has been introduced. By using the EBSD measurement technique, a data set of a
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(a) (b)

(c) (d)

(e) (f)

Figure 23 Comparison of Euler angles [°] between the experiment (left) and numerical results (right)
at 20% elongation state. (a, b) Angle φ1, (c, d) angle �, and (e, f) angle φ2.

DC04 steel specimen in the cold formed and the heat-treated processes has been pre-
sented. In order to analyze and evaluate quantitatively the experimental texture data, a
Matlab toolbox MTEX has been introduced and used. The MTEX allowed to import the
different EBSD data formats and to obtain a 2D grain structure with corresponding crystal
orientations. These EBSD data sets have been processed to identify the grain information
and to obtain the clustered data.
A verification of the material model has been carried out. Based on EBSD data, the

grain structure was modeled by a FE model. The FE mesh has been imported into
the ABAQUS/CAE software for the performance of the grain scale simulation. This
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 24 Comparison of reorientation [°] between the experiment (left) and numerical results (right)
at different states. (a, b) 5%, (c, d) 10%, (e, f) 15%, and (g, h) 20% elongation.
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FE simulation has been used for the identified DC04 steel material microparameters,
and two families of the BCC slip systems were assumed to possibly act simultaneously,
namely {110}〈111〉 + {112}〈111〉. In addition, a procedure for mapping the initial grain
orientations into the fundamental zone has been implemented. The micromechanical
behavior was analyzed in terms of the evolution of grain orientations. The grain orienta-
tions and reorientations are compared to the experiment for a group of local grains. The
numerical results of local grain reorientations seem to underestimate the heterogeneity
compared to the experimental results. This issue can be probably explained by the neglect
of the 3D microstructure and interaction of the beneath microstructure in the grain scale
simulation. The influence of 3D interaction needs to be further investigated in further
studies.
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