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Abstract

This work presents an approach to solve inverse problems in the application of water
quality management in reservoir systems. One such application is contaminant
cleanup, which is challenging because tasks such as inferring the contaminant location
and its distribution require large computational efforts and data storage requirements.
In addition, real systems contain uncertain parameters such as wind velocity; these
uncertainties must be accounted for in the inference problem. The approach
developed here uses the combination of a reduced-order model and a Bayesian
inference formulation to rapidly determine contaminant locations given sparse
measurements of contaminant concentration. The system is modelled by the coupled
Navier-Stokes equations and convection-diffusion transport equations. The Galerkin
finite element method provides an approximate numerical solution-the ’full model’,
which cannot be solved in real-time. The proper orthogonal decomposition and
Galerkin projection technique are applied to obtain a reduced-order model that
approximates the full model. The Bayesian formulation of the inverse problem is solved
using a Markov chain Monte Carlo method for a variety of source locations in the
domain. Numerical results show that applying the reduced-order model to the source
inversion problem yields a speed-up in computational time by a factor of approximately
32 with acceptable accuracy in comparison with the full model. Application of the
inference strategy shows the potential effectiveness of this computational modeling
approach for managing water quality.

Keywords: Bayesian; Convection-diffusion equation; Navier-Stokes equations; Markov chain
Monte Carlo; Inverse problem; Proper orthogonal decomposition; Reduced-order model

Background
Hydrodynamic processes such as contaminant transport in lakes and reservoirs have a
direct impact on water quality. The contaminants will appear, spread out, and decrease
in concentration, etc. because of some processes such as convection, diffusion, time rate
release of contaminants, and distance of travel. To simulate such processes, a coupled sys-
tem of partial differential equations (PDEs) including the Navier-Stokes equations (NSEs)
and contaminant transport equations needs to be solved. A better understanding of these
processes is important in managing water resources effectively.
The direct or forward problems compute the distribution of contaminant directly from

given input information such as contaminant location, contaminant properties, fluid flow
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properties, boundary conditions, initial conditions, etc. On the contrary, the inverse prob-
lems infer the unknown physical parameters, boundary conditions, initial conditions, or
geometry given a set of measured data. These known data can be obtained experimen-
tal or computational. In realistic applications, data are not perfect because of error due
to sensor noise. In addition, the model may contain some uncertain parameters such as
wind velocity. Thus, inverse problems are generally stochastic problems.
A Bayesian inference approach to inverse problems is one way to deal with the

stochastic problem. This approach takes into account both the information of the model
parameters with uncertainty and the inaccuracy of data in terms of a probability distri-
bution [1,2]. The Bayesian approach provides a general framework for the formulation of
wide variety of problems such as climate modeling [3], contaminant transport modeling
[4-6], and heat transfer [7]. Under the Bayesian framework, simulated solutions need to be
evaluated repeatedly over different samples of the input parameters. There are available
sampling strategies associated with Bayesian computation such as Markov chain Monte
Carlo (MCMC) methods [8-11]. However, if we use traditional PDE discretization meth-
ods, such as finite element or finite volume methods, the resulting numerical models
describing the system will be very large and expensive to solve.
This paper presents an efficient computational approach to solve the statistical inverse

problem. The approach uses the combination of a reduced-order model and a Bayesian
inference formulation. The Galerkin finite element method [12] provides an approximate
numerical solution - the ‘full model’ or ‘forward model’. TheMCMCmethod is applied to
solve the Bayesian inverse problems. In particular, we are interested in inferring an arbi-
trary source location in a time-dependent convection-diffusion transport equation, given
a velocity field and a set of measured data of the concentration field at sparse spatial and
temporal locations. We obtain the velocity field by solving the Navier-Stokes equations.
Solution of large-scale inverse problems can be accelerated by applying model order

reduction [13-15]. The idea is to project the large-scale governing equations onto the sub-
space spanned by a reduced-space basis, yielding a low-order dynamical system. Proper
orthogonal decomposition (POD) is the most popular method to find the reduced basis
for a given set of data. The snapshot POD method, which was proposed by Sirovich [16],
provide an efficient way for determining the POD basis vectors. Snapshots are solutions
of a numerical simulation at selected times or choices of the parameters. The choice
of snapshots should ensure that the resulting POD basis captures the most important
characteristics of the system.
Since the convection term in contaminant transport equations is a velocity-dependent

term, we cannot apply the standard POD reduction framework. The evaluation of the
velocity-dependent convection term in the reduced system still depends on the full finite
element dimension and has the same complexity as the full-order system. Thus, a sys-
tem with velocity-dependent convection term needs an additional treatment to obtain an
efficient reduced-order model.
This paper is outlined as follows. In the section ‘Mathematical model and numerical

methods’, we introduce the mathematical model, the finite element approximate tech-
nique, and the Bayesian inference formulation and its solution using an MCMC method.
In section ‘Model order reduction’, we describe the model order reduction technique
and the treatment of the velocity-dependent convection term. In the section ‘Numerical
example’, we use the numerical example to demonstrate the solution of the statistical
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inverse problem and the reduced-ordermodel performance.We provide some concluding
remarks in the final section.

Methods
In this section, the mathematical model, finite element approximation technique,
Bayesian inference formulation, and MCMCmethod are briefly introduced.

Transport model

Consider the fluid flow through a physical domain D ⊂ R
d, d = 1, 2, 3 with boundary �.

The contaminant concentration c :≡ c(x, t; θ) satisfies the dimensionless parabolic PDEs,
boundary conditions, and initial conditions as follows:

∂c
∂t

+ u · ∇c − 1
Pe

�c = f in D×[t0, tf ] , (1)

c = g on �D×[t0, tf ] , (2)
∂c
∂n

= 0 on �N×[t0, tf ] , (3)

c(x, t0) = c0(x) in D, (4)

where x ∈ D denotes the spatial coordinates, t ∈ [t0, tf ] denotes time, and c0 is the given
initial condition. The inlet boundary �D is subjected to a Dirichlet condition, while the
remainder of the boundary �N = � \ �D satisfies Neumann conditions. The external
source f (x, t; θ) in Equation 1 is used here as a input parameter, where θ ∈ D is the
source location. In this study, we suppose that the contaminant source drives the trans-
port process, given a velocity field u ∈ R

d . Thus, the Péclet number Pe = ‖u‖L
κ

, where κ

is the diffusivity and L is the characteristic length. The velocity field is a function of x and
t, u(x, t), which can be obtained by solving the Navier-Stokes equations, as follows:

∂u
∂t

+ (
u · ∇)

u − 1
Re

∇2u + ∇p = fc in D× [t0, tf ] , (5)

∇ · u = 0 in D× [t0, tf ] , (6)

u = uD on �× [t0, tf ] , (7)

u(x, t0) = u0(x) in D, (8)

where Re is the Reynolds number, p is the pressure field, and fc is the body force. So, for
any given f and u, one can solve for the solution c(x, t; θ).

Finite element approximations

The finite element method [12] associated with the stabilized second-order fractional-
step method is applied to solve the incompressible Navier-Stokes equations (5 to 8). The
detailed discussion and derivation of this method is beyond the scope of this paper. For
more details, please refer to [17,18].
We also use the finite element method for spatial discretization of the contaminant

transport equations in Equations 1 to 4. This leads to the semi-discrete equations

Mċ + (
C(u) + K

)
c = F(t; θ), (9)

c(t0) = c0, (10)

with the output of contaminant solution at sensor locations in the domain

y = Bc. (11)
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Here, c(t) ∈ R
N is the discretized approximation of c(x, t) and containsN state unknowns

where N is the number of grid points in the spatial discretization. ċ is the derivative of c
with respect to time. The vector y ∈ R

No contains the No outputs of the system related to
the state through the matrix B ∈ R

No×N ,No � N . The matricesM,K,C(u) ∈ R
N×N and

the vector F(t; θ) ∈ R
N are defined in the finite element space as follows:

Mi,j =
∫
D

φi(x)φj(x) dx, (12)

Ki,j =
∫
D

1
Pe

∇φi(x) · ∇φj(x) dx, (13)

(
C(u)

)
i,j =

∫
D
u · ∇φi(x)φj(x) dx, (14)

(
F(t; θ)

)
j =

∫
D
f (t; θ)φj(x) dx. (15)

Here φi with i = 1, · · · ,N is the finite element basis and θ ∈ R
d is the coordinate vector

of the source location.

Bayesian inference to inverse problems

The Bayesian formulation of an inference problem is derived from Bayes’ theorem [1]:

p(θ |y) = p(y|θ)p(θ)

p(y)
, (16)

where y ∈ R
No is the observed data and θ ∈ R

d ⊆ D is the vector of input parameters.
p(θ) denotes the prior distribution of the parameters, p(y|θ) is the likelihood function,
and p(θ |y) is the posterior distribution of parameters given the observed data. p(y) is
the prior predictive distribution of y and may be set to an unknown constant that is not
needed in the MCMC solution method. In this case, we write Bayes’s formula as

p(θ |y) ∝ p(y|θ)p(θ). (17)

A simple model for the likelihood function can be obtained from the following relation-
ship,

y = G(θ) + η, (18)

where η is the noise which we assume to be white Gaussian noise η ∼ N(0, σ 2I).
The input-output relative in Equations 1 to 4 is denoted as the forward model G(θ).
Subsequently, the likelihood can be written as

p(y|θ) = 1
σ
√
2π

exp
(

− 1
2σ 2 ‖y − G(θ)‖2

)
. (19)

There are many approaches to define the prior information, such as Gaussian Markov
random fields or uniform distribution models, etc. In this work, we assume that our
only prior information on the source location is given by the bounds on the domain.
Thus, using the principle of maximum entropy [19], we take our prior to be a uniform
distribution. Therefore, Equation 17 becomes

p(θ |y) ∝
K∏
i=1

exp
[
− 1
2σ 2 (yi − G(θ)i)

T (yi − G(θ)i)

]
. (20)

Here, K is the number of time steps over which we collect the output data.
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Markov chain Monte Carlo for posterior sampling

MCMC simulation provides a sampling strategy from a proposal distribution to the target
distribution using the Markov chain mechanism. Hastings introduced the Metropolis-
Hastings (MH) algorithm [10], which is a generalized version of the Metropolis algorithm
[8,9], in which we can apply both symmetric and asymmetric proposal distributions. In
this work, the MH algorithm is used to solve the Bayesian inverse problem. The MH
algorithm is summarized as follows:

1. Initialize the chain θ0 and set n = 0
2. Repeat

• n = n + 1
• Generate a proposal point θ∗ ∼ q(θ∗|θ)

• Generate U from a uniform U(0, 1) distribution
• Update the state to θn+1 as

θn+1 =
{

θ∗, if β < U
θn, otherwise

3. Until n = Nmcmc → stop.

Here, β is the acceptance-rejection ratio, given by

β = min
(
1,

π (θ∗) q
(
θn−1|θ∗)

π
(
θn−1) q (θ∗) |θn−1

)
. (21)

Nmcmc is the total number of samples, π(θ) is the target distribution, q(θ∗|θ) is a proposal
distribution, and U is a random number.
The discretized model in the form of ordinary differential equations (ODEs)

(Equations 9 to 11) may have very large dimensions and be expensive to solve. The
MCMC method requires evaluating repeatedly the solution of the forward model (many
thousands or even millions of times). Hence, these simulations can be a computation-
ally expensive undertaking. In such situations, the reduced-order model is needed to
approximate the large-scale model, which allows efficient simulations.

Model order reduction

This section presents the model order reduction framework. This includes the reduction
via projection, the proper orthogonal decomposition method, the additional treatment
for the velocity-dependent convection term, and the error estimation.

Reduction via projection

A reduced-order system approximating the ODEs (9 to 11) can be obtained by approx-
imating the full state vector c as a linear combination of m basis vectors as follows:

c ≈ Vcr , (22)
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where cr ∈ R
m is the reduced order state and V = [v1 v2 · · · vm]∈ R

N×m is an orthonor-
mal basis, i.e., VTV = I. The low-order model can be derived by projecting the governing
system (9 to 11) onto the reduced space formed by the column span of basis V. This yields

Mr ċr + (
Cr(u) + Kr

)
cr = Fr(t; θ), (23)

cr(t0) = c0r , (24)

yr = Brcr , (25)

where

Mr = VTMV , (26)

Kr = VTKV , (27)

Cr(u) = VTC(u)V , (28)

Fr(t; θ) = VTF(t; θ), (29)

Br = BV , (30)

c0r = VTc0. (31)

The model reduction task is to find a suitable basis V so that m � N and the reduced-
order model yields accurate results. This study will consider POD as the method to
compute the basis.

Proper orthogonal decomposition

POD provides a method to compute the reduced-order basis V and construct the low-
order system. Here, we briefly describe the general POD method (more details may be
found in [16]).
Supposed that we have the snapshot matrix X ∈ R

N×Q, where Q is the number of
snapshot solutions, which are built from the instantaneous solution cs(tk) of the forward
model, corresponding to s = 1, · · · , S random input source locations, picked up at k =
1, · · · ,T different time steps (so that Q = ST). The POD basis vectors are the m left
singular vectors of X corresponding to the largest singular values (m ≤ Q). Let σi, i =
1, 2, · · · ,Q be the singular values of X in decreasing order. We choose the number of POD
basis vectors to retain in the reduced-order model asm ≤ Q so that

m∑
i=1

σ 2
i /

Q∑
j=1

σ 2
j ≥ εE , (32)

where εE(%) is the required amount of energy, typically taken to be 99% or higher.
After obtaining the POD basis vectors for the contaminant, we have defined our

reduced-order system. However, as mentioned earlier, the dimension of the system of
Equations 23 to 25 is reduced only in state (concentration). The reduced convection
matrix (Cr(u)) in Equation 28 still depends on the full dimension of the velocity field
as in Equation 14. This means that we have to re-compute the full convection matrix
(C(u)) at each time-step before projecting it onto the reduced-space basis to obtain the
reduced convection matrix (Cr(u)). Hence, we need an additional treatment to avoid this
computational cost.
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Linear expansion techniques for velocity-dependent term

We proceed by representing the velocity field as a linear combination of POD velocity
basis vectors. The velocity-dependent convection matrix can then be expanded based on
this velocity expansion. In particular, let u(x, t) be a given velocity field and

{
u(x, tk)

}T
k=1

be a set of ‘snapshots’ of velocities which are obtained from Equations 5 to 8 and taken
over T time steps. The velocity field is decomposed as

u(x, t) = um(x) + u′(x, t), (33)

where um(x) = 1
T

∑T
k=1 u(x, tk) is the mean velocity field and u′(x, t) is the fluctuating

velocity field. The fluctuating velocity field is then represented by

u′(x, t) =
T∑

k=1
αk(t)�k(x), (34)

where �k(x) is the kth POD velocity basis and αk(t) is the corresponding time dependent
amplitude. We now consider the expansion of the velocity field as

u(x, t) = um(x) +
Nu∑
k=1

αk(t)�k(x), (35)

where Nu � T is the number of POD basis vectors use to represent the velocity.

Figure 1 The domain of interest. (a) Physical domain. (b) Computational domain.
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Galerkin projection of the time-dependent velocity term in Equation 1 has the form as

(
u · ∇c,Vi

) =
([

um +
Nu∑
k=1

αk�k

]
· ∇c,Vi

)

= [um · ∇c,Vi] +
( Nu∑
k=1

αk�k · ∇c,Vi

)
. (36)

The discrete form of Equation 36 then becomes

Cr(u) = [
Vi,um · ∇Vj

] +
Nu∑
k=1

αk
[
Vi,�k · ∇Vj

]

= Crm
(
um

) +
Nu∑
k=1

αkCrk
(
�k

)
. (37)

Here, Crm
(
um(x)

)
and Crk

(
�k(x)

)
, k = 1, · · · ,Nu are the reduced-order forms of the full-

order convection matrices C
(
um(x)

)
and C

(
�k(x)

)
, respectively. They are computed only

once in the offline step. Thus, the first case of the reduced-order model (with Equation
28) is only reduced in state (concentration), but the second case (with Equation 37) is
now reduced in both state (concentration) and parameter (velocity).

Error estimation

In order to estimate the efficiency of the reduced model relative to the full model, we
use the relative errors of state solutions and relative errors of outputs. These errors are
defined as follows:
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Figure 2 Contaminant field of forward model at specific times. Figures are taken at (a) t = 4.0s, (b)
t = 8.0s, (c) t = 16.0s and (d) t = 32.0s.
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εF
(
tk , θ

)
= ‖c (

tk ; θ
) − Vcr

(
tk ; θ

) ‖L2(D)

‖c (
tk ; θ

) ‖L2(D)

, (38)

εs
(
tk , θ

)
= ‖y (

tk ; θ
) − yr

(
tk ; θ

) ‖L2(D)

‖y (
tk ; θ

) ‖L2(D)

. (39)

Here, c
(
tk ; θ

)
, cr

(
tk ; θ

)
, 1 ≤ k ≤ T are the full and reduced solutions, while y

(
tk ; θ

)
and

yr(tk ; θ), 1 ≤ k ≤ T are the full and reduced outputs of interest, respectively.

Results and discussion
We consider a numerical example based on a 2D mathematical model. The velocity field
in the reservoir is obtained by solving a 2D laterally averaged Navier-Stokes model. The
Bayesian formulation of the inverse problem is then solved to determine an uncertain con-
taminant source location. We compare the effectiveness of solving the inverse problem
using both the full model and reduced model techniques.

Model setup

The physical domain is illustrated in Figure 1a, which represents a simplified model of
a 2D laterally averaged reservoir system. The reservoir system includes a main reservoir
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section and the river connections. We assume that the contaminant is present within the
main reservoir section and that the contaminant transport processes are mainly affected
by the inflow and wind velocity. We assume that other factors (such as heat exchange,
etc.) have little influence on the processes. The spatial domain is discretized with a finite
element mesh, as shown in Figure 1b. The total number of grid points is N = 1, 377 and
the total number of elements isNE = 2, 560. The simulation is run from initial time t0 = 0
to final time tf = 40, with time-step size �t = 0.08. Thus, the number of time steps is
T = 500.
A time-dependent velocity field is obtained from the 2D laterally averaged system,

which is given in Equations 5 to 8, where the body force fc = [ fcx; fcz]T = [0; g]T with g
the gravitational acceleration.
The boundary conditions are set up as follows (refer to Figure 1a for the boundary

definitions):

(u, w) = (1, 0) on �12, (40)

(u, w) = (−16 ∗ (2.0 + z) ∗ (1.5 + z), 0) on �4, (41)

(u, w) = (−16 ∗ (1.0 + z) ∗ (0.5 + z), 0) on �8, (42)

(u, w) = (0.03Va, 0) on �11, (43)

p = 0 on �11. (44)

The velocity on remaining boundaries are set to zero. Here, Va is the wind speed at
10 m above the water surface. In this example, we assumed that Va = 2 m/s for the
entire simulation time. The Reynolds number is set to Re = 5.0e5, and a mixing length
turbulence model is used [20]. The full model system is given in Equations 9 to 10. The
Crank-Nicolson method [21] is used to discretize the system in time.
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Figure 4 The first four POD basis vectors of the velocity field. (a) First POD velocity basis vector. (b)
Second POD velocity basis vector. (c) Third POD velocity basis vector. (d) Fourth POD velocity basis vector.
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Figure 5 Velocity profile taken at t = tf at specific locations. Figures are captured (a) U profile at x = 0.5,
(b) V profile at x = 0.5, (c) U profile at x = 1 and (d) V profile at x = 1. Here U(full) and V(full) are the original
velocity while Ur(mor) and Vr(mor) are the approximate velocity using a POD expansion with Nu = 12 modes.

The setup for the contaminant transport part of the problem is as follows. We use a
contaminant source that is defined as the superposition of Gaussian sources, each one
active on the time interval t0k ∈ [t0, toff] and centered at θk ∈ D, with strength hk and
width σsk :

f (x, t; θ) =
ns∑
k=1

hk
2πσ 2

sk
exp

(
−|θk − x|2

2σ 2
sk

)
δ(t − t0k). (45)

Here, to simplify the problem, we choose the number of sources to be ns = 1, located
at θ1 = (xc, zc), with strength h1 = 0.2 and width σs1 = 0.05. The active time of the
source is t01 ∈ [0, toff] with toff = 10. The inflow boundary and other solid boundaries
satisfy a homogeneous Dirichlet condition on the contaminant concentration; the outflow
boundaries and free surface boundary satisfy a homogeneous Neumann condition. The
diffusivity coefficient is assumed to be constant, κ = 0.005. Thus, the Péclet number
Pe = ‖u‖L

κ
= 100, where the length of the inflow section is used as the characteristic

Table 1 The properties of various reduced-order models

Ns m εROM−1 εROM−2
tfull

tROM−1

tfull
tROM−2

10 153 3.25e-1 4.32e-1 0.801 111

20 220 9.81e-2 9.74e-2 0.799 56

30 257 8.03e-3 6.75e-3 0.795 32

40 284 7.53e-3 7.08e-3 0.785 26

50 308 3.39e-3 2.12e-2 0.776 22

60 328 5.83e-3 6.08e-3 0.767 19

70 342 1.41e-2 1.21e-2 0.764 18

80 355 9.09e-3 8.21e-3 0.763 15



Nguyen et al. Asia Pacific Journal on Computational Engineering 2014, 1:2 Page 12 of 17
http://www.apjcen.com/content/1/1/2

length L = 0.5. The contaminant concentration is assumed to be zero at initial time
t0 = 0.
With this setup, we have specified our forward problem with the input parameter θ ∈

R
2 in the range � := [0, 2]× [−2, 0]. Figure 2 shows the contaminant solution c(x, t; θ)

of the forward model with θ1 = (0.5,−0.5) at specific times. The contaminant field grows
while the source is active. After the shutoff time of the source, the contaminant moves
away, spreads out, and decreases in concentration due to convection and diffusion, until
it flows out of the domain.
The outputs of interest are the values of contaminant solution c(x, t; θ) at selected sen-

sor locations in the computational domain. These sensors are located on a 4 × 4 uniform
grid covering the reservoir domain as shown in Figure 1b.

Model order reduction

To perform the model order reduction, we need to obtain the POD expansion of velocity
field.
Figure 3a shows all eigenvalues of the velocity field. As the number of eigenvalues

increases, the significant of eigenvalues decreases, respectively. Figure 3b shows the rela-
tive errors of representing the velocity field with various numbers of POD velocity modes.
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The goal of this step is to find a suitable Nu that can provide a fast computation of the
velocity-dependent convection term and to ensure that the relative errors are acceptable.
In this example, we choose the number of terms in the velocity expansion to be Nu = 12
yields the relative error around 5 × 10−3.
Figure 4 illustrates the first four POD basis vectors of the velocity field. Clearly, they

represent the most important characteristics of the velocity field.
A comparison between the original velocity and the approximate velocity representa-

tion at final simulating time is given in Figure 5. We observe that the approximate velocity
profiles at x = 0.5 (Figures 5a,b) and x = 1.0 (Figures 5c,d) are able to represent well the
characteristics of the original velocity profiles.
To generate the snapshots needed for the POD basis to represent the contaminant con-

centration, we choose S location samples in the computational domain. In this example,
we generate random input locations θ ∈ D ⊂ R

2 for source term f (x, t; θ).
Table 1 shows the relative errors and computational time ratio of the reduced-order

models (ROM) for different sample sizes of snapshot matrices. Here, we use the nota-
tion ROM-1 to denote the reduced model mentioned in the section ‘Proper orthogonal
decomposition’ and ROM-2 for the one mentioned in the section ‘Linear expansion tech-
niques for velocity-dependent term’. The POD basis is chosen based on the energy as in
Equation 32, with εE = 99.999%. We observe that while the relative errors in the out-
puts are similar for both cases, the ratio of computational time differs significantly. The
case ROM-2 shows speedups from 15 to 111 times, while the case ROM-1 is in fact more
expensive to solve than the full forward model (tfull ≈ 285 seconds)1. This is because
the first case consumes a lot of time in re-computing the velocity-dependent convection
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Figure 8 A comparison of the full model (N = 1377) and ROM (m = 257) output of interest. (a)
Output comparison and (b) a set of generated data at sensors 6, 7, 10 and 11..

matrix and then projecting it onto the reduced space at each time step. We choose as our
reduced-order model the case ROM-2 with sample size S = 30.
Figure 6a presents the eigenvalues of contaminant snapshot matrix for the sample test

case S = 30. We observe that POD eigenvalues of the contaminant field are decayed very
fast, and they are significantly important only at the first few hundred values. The first
four POD contaminant basis vectors are shown in Figure 7.
Figure 6b shows relative errors of ROMs for different numbers of POD basis vectors.

With the energy taken to 99.99999%, the ROM resulted in 434 POD basis vectors with rel-
ative error around 4× 10−3. In the trade-off between accuracy results and computational

Table 2 Estimated inverse solutions for different numbers of POD basis

εE(%) m θ1 θ2 εθ tmcmc(s)

99.0 61 0.788 -0.595 5.31e-1 1.75e+3

90.9 111 0.484 -0.491 6.95e-2 2.74e+3

99.99 178 0.451 -0.471 1.05e-2 7.55e+3

99.999 257 0.443 -0.467 2.42e-3 8.71e+4

99.9999 343 0.446 -0.466 0 5.11e+5
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Figure 9 Credible regions and historical trajectory plots of the MCMC convergence. (a) A parameter
plot showing estimated source location with credible regions. (b) A contour plot of the posterior pdf.

efforts (please refer to Table 1), we can choose our ROMwith 99.999% of energy captured
which resulting in the size ofm = 257 POD basis vectors and an acceptably small error.
Figure 8a shows the outputs of the full model (y) and ROM-2 (yr) with size m = 257

at selected sensor locations. The selected sensors (sensor 6, 7, 10, and 11) capture more
information of the contaminant than the others for the case studied. We observe that
ROM-2 is able to capture well the behavior of the full model at the sensor locations. This
reduced-order model will be utilized as the forward solver in solving the inverse problem.

Inverse problems

MCMC is now used to solve the inverse problem for a variety of source locations using the
ROM-2 solver above. By accounting for both measured noise and uncertain information
inmodel parameters, Bayesian inference to inverse problem leads to a well-posed problem
resulting in a posterior distribution of the unknown [1,2]. Once obtaining the posterior

Table 3 Estimated inverse solutions for different MCMC starting points

Initial θ1−ini θ2−ini θ1−M θ2−M tmcmc(s)

Ini1 0.821 -0.955 0.451 -0.467 8.71e+4

Ini2 0.322 -0.451 0.458 -0.463 4.53e+4

Ini3 1.222 -0.451 0.452 -0.464 9.80e+4

Ini4 0.323 -1.313 0.456 -0.465 1.05e+5
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distribution sample, all statistical questions related to the unknown could be answered
with sample averages.
To represent the behavior of uncertain variables such as wind velocity, we generate noisy

data at sensor locations. The ‘real’ data (yreal) is generated synthetically by adding noise
to the ideal data (yideal) as in Equation 18. The noise is assumed to be Gaussian η ∼
N(0, σ 2I). Figure 8b shows the noisy data at sensor locations with σ = 0.3.
We use the snapshots with S = 30 samples above to generate several reduced-order

models with different energies. To estimate the relative error of the inverse problem solu-
tions (εθ ), we choose the solution corresponding to the largest order as a ‘truth’ solution.
We do the MCMC simulation with the starting point θini = (0.821; −0.955)T . The total
number of MCMC samples is set to Nmcmc = 5000. The initial burn-in period is set to
Nburnin = 500. After this stage, data is saved to compute summary statistics of source
locations.
Table 2 shows the results of the inverse source problems with different numbers of POD

basis. For the case with m = 257, the computational time is around 24 h to obtain the
solution. If we use the full forward solver, with the speedup factor as given in Table 1, the
computational time is estimated around 773 h or approximately 32 days.
Figure 9a shows the credible regions of the source locations θ . In this figure, both a

pairwise scatter plot and 1D marginal distributions are displayed. The dash line (in θ1
axis) and dash-dot line (in θ2 axis) show the probability density function of each param-
eter while the solid blue regions show the 95% and 99% credible regions in which the
parameters appeared the most (the blue dots).
To assess the convergence of the MCMC approach, we generate four different initial

points for the MH sampler. Figure 9b shows the contour plot of the posterior probability
density function (the contour plot corresponds to the result of Init1) and the historical
trajectories of MCMC samplers for each starting point. We observe that for all four initial
points, the MCMC simulations converge to the same final solution. However, depending
on the position of the initial points, the computational time varies, as given in Table 3.

Conclusion
This study has applied successfully the combination of a model order reduction tech-
nique based on the POD and a Bayesian inference approach to solve an inverse problem
that seeks to identify an uncertain contaminant location. Applying an additional POD
expansion to approximate the velocity results in a reduced-order model in both state
(concentration) and parameter (velocity). The resulting reduced-order model is efficient
for solution of the forward problem. Solution of the Bayesian formulation of the inverse
problem using the reduced-order solver is much more rapid than using the full model,
yielding the probability density of the source location in reasonable computational times.
The computational time of using a reduced-order model with m = 257 degrees of free-
dom is about a factor of 32 times lower than using the full model with size N = 1, 377.
This reduction is important in real-time water quality management applications because
it reduces time cost and storage requirements.

Endnote
1The simulations were performed on a personal computer (PC) with processor

Intel(R) Core(TM)2 Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 32-bit
Operating System.
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