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Abstract

Background: Simulation of pressure-induced fracture in two-dimensional (2D) and
three-dimensional (3D) fully saturated porous media is presented together with some
peculiar features.

Methods: A cohesive fracture model is adopted together with a discrete crack and
without predetermined fracture path. The fracture is filled with interface elements
which in the 2D case are quadrangular and triangular elements and in the 3D case
are either tetrahedral or wedge elements. The Rankine criterion is used for fracture
nucleation and advancement. In a 2D setting the fracture follows directly the
direction normal to the maximum principal stress while in the 3D case the fracture
follows the face of the element around the fracture tip closest to the normal
direction of the maximum principal stress at the tip. The procedure requires
continuous updating of the mesh around the crack tip to take into account the
evolving geometry. The updated mesh is obtained by means of an efficient mesh
generator based on Delaunay tessellation. The governing equations are written in
the framework of porous media mechanics and are solved numerically in a fully
coupled manner.

Results: Numerical examples dealing with well injection (constant inflow) in a
geological setting and hydraulic fracture in 2D and 3D concrete dams (increasing
pressure) conclude the paper. A counter-example involving thermomecanically
driven fracture, also a coupled problem, is included as well.

Conclusions: The examples highlight some peculiar features of hydraulic fracture
propagation. In particular the adopted method is able to capture the hints of Self-
Organized Criticality featured by hydraulic fracturing.
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Background
Fluid-driven fracture propagating in porous media is widely used in geomechanics to

improve the permeability of reservoirs in oil and gas recovery or of geothermal wells.

Another application of importance is related to the overtopping stability analysis of

dams. In the case of reservoir engineering, water is forced under high pressure deep

into the ground by injection into a well. The fluid, usually mixed with sand and some

chemicals, penetrates in the reservoir rock, opening long cracks (fracking). Horizontal

drilling together with hydraulic fracturing makes the extraction of tightly bound nat-

ural gas from shale formations economically feasible [1]. In the field, it is unfortunately

rather difficult to obtain direct information about the evolution of the crack in the

ground, and very little data are known or accessible. Two types of measurements are

mainly performed: monitoring of pressure fluctuations at the injection pump and
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registration of acoustic emissions at the surface [2]. Fracking can also induce small

earthquakes [3]. Pressure-induced fracture propagation presents some peculiar features

such as pressure peaks and stepwise advancement, which have been discovered only re-

cently and need further investigation. It is recalled that differently from tensile experi-

ments where the crack surfaces are stress free, in hydraulic fracturing, these surfaces

are loaded by a pressure distribution resulting from the invading fluid or gas [2]. Simu-

lation is an extremely useful tool to obtain more insight into the problem. The paper

addresses this issue.

Contributions to the mathematical modelling of fluid-driven fractures have been

made continuously since the 1960s, beginning with Perkins and Kern [4]. These au-

thors made various simplifying assumptions, for instance, regarding fluid flow, frac-

ture shape and velocity leakage from the fracture. For other analytical solutions in the

frame of linear fracture mechanics, assuming the problem to be stationary, see [5-9].

They suffer the limits of an analytical approach, in particular the inability to represent

an evolutionary problem in a domain with a real complexity. An analysis of solid and

fluid behaviour near the crack tip can be found in [10,11]. Boone and Ingraffea [12]

present a numerical model in the context of linear fracture mechanics which allows

for fluid leakage in the medium surrounding the fracture and assumes a moving crack

depending on the applied loads and material properties. Tzschichholz and Herrmann

[2] used a two-dimensional (2D) lattice model for constant injection rate and homo-

geneous and heterogeneous material which only breaks under tension. Carter et al.

[13] show a fully three-dimensional (3D) hydraulic fracture model which neglects the

fluid continuity equation in the medium surrounding the fracture. A discrete fracture

approach with remeshing in an unstructured mesh and automatic mesh refinement is

used by Schrefler et al. [14]. An element threshold number (number of elements over

the cohesive zone) was identified to obtain mesh-independent results. This approach

has been extended to 3D situation in [15]. Extended finite elements (XFEM) have

been applied to hydraulic fracturing in a partially saturated porous medium by

Réthoré et al. [16] in a 2D setting. In this case, a two-scale model has been developed

for the fluid flow: in the cohesive crack, Darcy's equation is used for flow in a porous

medium, and identities are derived that couple the local momentum and mass balances to

the governing equations for the unsaturated medium at macroscopic level. As an example,

the rupture of a saturated square plate (0.25 × 0.25 m) in plane strain conditions is investi-

gated under a prescribed fixed vertical velocity v = 2.35 × 10−2 μm/s in the opposite

direction at the top and bottom of the plate (tensile loading). The mesh used con-

sists of 20 × 20 quadrilateral elements (12.5 × 12.5 mm each) with bilinear shape

functions, and the time step size is 1 s. In the cracked region, the elements are fur-

ther divided in four triangles. Mohammadnejad and Khoei [17] solve the same prob-

lem also with XFEM, using full two-phase flow throughout the region. Darcy flow is

assumed within the crack. Finer meshes are used as above (smallest element size

4.5 × 4.5 mm) and much lower time steps (0.25 to 0.125 s). Cavitation is found in

both papers, also due to the impervious boundary conditions chosen. Partition of

unity finite elements (PUFEM) are used for 2D mode I crack propagation in satu-

rated ionized porous media by Kraaijeveldt et al. [18]. A pull test, a delamination

test and an osmopolarity test are simulated with rather fine regular meshes (quad-

rangular elements with side length of the order of 2 mm and lower) and time step



Secchi and Schrefler Asia Pacific Journal on Computational Engineering 2014, 1:8 Page 3 of 21
http://www.apjcen.com/content/1/1/8
size down to 0.1 s. The time and space discretizations, including the element thresh-

old number used for the solutions, are extremely important for catching the phe-

nomena described next.

We address now the peculiar behaviour of hydraulic fracture propagation which has

been observed only by a minority of the above-mentioned authors, but has been con-

firmed experimentally. Tzschichholz and Herrmann [2] have evidenced with their lat-

tice model and constant injection rate a drop in pressure in time and oscillations on

short time scales. These authors explain this by the fact that at the beginning high

pressures are needed to push the fluid into the crack. The crack is enlarged and the

pressure drops because the enlarged crack can now be opened much more easily than

before. The pressure goes down although additional fluid has been added to the crack

in the time step. If the pressure drops too much, the stresses at the crack tip fall

below their cohesion value and the crack cannot grow at the next time step. By inject-

ing more fluid into the crack, the pressure increases linearly in time until the cohe-

sion forces can be overcome again. Using arguments from continuum mechanics, the

authors show that the obtained value for pressure decline in the long term agrees ac-

ceptably with their numerical results. The short-term deviations are due the lattice

model and the ensuing pressure drops. Oscillations are also obtained for the stored

lattice energy. The breaking process is discontinuous in time with time intervals of

quiescence where all beams on the crack surface are stressed below their cohesion

thresholds and the acting pressure increases linearly in time. Tzschichholz and

Herrmann [2] also find a temporal clustering of the breaking events, calling such a

sequence bursts (avalanche behaviour). The bursts are unevenly distributed in time

and occur relatively often for small times and become rarer later. There is resem-

blance between the obtained data and magnitude records of earthquakes or of

acoustic emission records from laboratory experiments. We have shown with our

porous media mechanics model in a 2D setting [14] that in the case of hydraulic

fracturing the fracture advances stepwise. Two types of mesh refinement in space

and refinement in time were used, but the stepwise advancement did not disappear.

Such steps do not appear in other coupled solutions involving cohesive fracture, as

e.g. the thermo-elastic one of [19] where the crack surfaces are stress free. The step-

wise advancement and flow jumps were also found by Kraaijeveld [20] with a strong

and a weak discontinuity model for flow. In [18], the stepwise advancement in mode

I crack propagation is difficult to see because a continuous pressure profile across

the crack is used. However, continuous pressure profile only works for sufficiently

fine meshes. If the mesh is sufficiently fine, then the discretization can resolve the

steep pressure gradients along the crack, but the advantage of PUFEM which allows

keeping the mesh pretty rough all over the continuum is lost. Hence, dealing with

the stepwise progression of the crack in this mode I model is only possible with a

finer mesh than the one used (JM Huyghe, personal communication). This is why

the authors state that the physical phenomenon challenges the numerical scheme.

In mode II, as shown in [20,21], this problem does not appear because a discontinu-

ous pressure across the crack is accounted for. There it is not attempted to resolve

the steep pressure gradient, but this gradient is reconstructed afterwards, using the

Terzaghi analytical solution for pressure diffusion. This two-step procedure allows

using a rough mesh and still handling a realistic pressure gradient. Stepwise crack
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advancement can clearly be observed in the crack length histories of Figure four of

[17], while it does not appear in the solution for the same problem in [16]. The cohesive

fracture length for this problem is estimated with Barenblatt's expression (see Equation 22)

[22] to be about 136 mm. Hence, there are about 10 elements over the cohesive zone in

[16] and 30 elements in [17]. The first value is probably below the element threshold num-

ber for this type of problem, even with XFEM (see also the large time steps used), while the

second one is sufficient even for standard elements. While both use XFEM, the two-step

procedure and the large time step size and coarse mesh in [16] hide the problem.

Finally, stepwise advancement and flow are also mentioned in [23], where PUFEM

is used for 2D poroelastic media. Their method still suffers from mesh dependence

because the crack propagates through one element each time step. Hence, their con-

clusions are not definite. However, Pizzocolo et al. [24] confirmed stepwise advance-

ment experimentally with a test on a small hydrogel disk. The duration of the pause

Δt between steps is found to be inversely related to the hydraulic permeability K ac-

cording to Δt = Δx2 / KE with E Young's modulus and Δx length of the step. A pos-

sible explanation for the stepwise behaviour observed in [20,21,24] put forward in

[24] is that an incompressible fluid consolidation comes into play which prevents tip

advancement until the overpressures due to the last advancement have been dissi-

pated, and the stress has been transferred again to the solid phase. This implies the

existence of pressure peaks after each advancement stage. During the period of quies-

cence, the effective stress is below the breaking threshold. Consolidation as a possible

explanation for the stepwise advancement needs further investigation in the case of

fluid injection, because for some permeability values the tip pressure goes down to

zero as shown below on an example. The existence of periods of quiescence is in line

with the findings of [2]. We will show that this phenomenon is not only relevant for

small structures, where it has been observed experimentally, but also for large struc-

tures such as underground soil masses and dams. In that case, the fracture length is

much larger, but the phenomenon is still there and the bursts can be felt at great dis-

tances compared to the crack length.
Methods
The first subsection presents the fracture model, the second subsection summarizes

the governing equations and their numerical solution by means of the finite element

method and the third subsection explains the adopted fracture advancement procedure

and the required refinements necessary to obtain mesh-independent results.
The fracture model

We use a discrete crack model for a situation depicted in Figure 1: Ω is the domain, Γe
is the boundary of the fully saturated porous material surrounding the crack, Γ′ is the

crack boundary and �Ω is the domain inside the crack filled with fluid only. There is

fluid exchange between the crack and the surrounding porous medium. The mechan-

ical behaviour of the solid phase at a distance from the process zone is assumed to obey

a Green elastic or hyperelastic material behaviour [14].

For the fracture itself, we use a cohesive fracture model. Between the real fracture

apex which appears at macroscopic level and the apex of a fictitious fracture, there is a



Figure 1 Hydraulic fracture domain and cohesive crack geometry. Definition of the hydraulic fracture
domain, reprinted from [15], Copyright (2012), with permission from Springer, and the cohesive crack
geometry, reprinted from [14], Copyright (2006), with permission from Elsevier.
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process zone where cohesive forces act (see Figure 1). Following [22,25,26], the cohe-

sive law for mode I crack opening with monotonically increasing opening is

σ ¼ σ0 1−
δσ
δσcr

� �
ð1Þ

σ0 being the maximum cohesive traction (closed crack), δσ the current relative displace-
ment normal to the crack, δσcr the maximum opening with exchange of cohesive trac-

tions and Gc = σ0 × δσcr / 2 the fracture energy. If after some opening δσ1 < δσcr, the

crack begins to close and tractions obey a linear unloading as

σ ¼ σ0 1−
δσ1
δσcr

� �
δσ
δσ1

ð2Þ

When the crack reopens, Equation 2 is reversed until the opening δσ1 is recovered;
then, tractions obey again Equation 1.

When tangential relative displacements of the sides of a fracture in the process zone

cannot be disregarded, mixed mode crack opening takes place. This is often the case of

a crack moving along an interface separating two solid components. In fact, whereas

the crack path in a homogeneous medium is governed by the principal stress direction,

the interface has an orientation that is usually different from the principal stress direc-

tion. The mixed cohesive mechanical model involves the simultaneous activation of

normal and tangential displacement discontinuity and corresponding tractions. For the

pure mode II, the relationship between tangential tractions and displacements is

τ ¼ τ0
δσ
δσcr

δτ
δτj j ð3Þ

τ0 being the maximum tangential stress (closed crack), δτ the relative displacement par-

allel to the crack and δσcr the limiting value opening for stress transmission. The

unloading/loading from/to some opening δσ1 < δσcr follows the same behaviour as for

mode I.
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For the mixed mode crack propagation, the interaction between the two cohesive

mechanisms is treated as in [27]. By defining an equivalent or effective opening dis-

placement δ and the scalar effective traction t as

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2δ2τδ

2
σ

q
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−2τ2 þ σ2

q
ð4Þ

the resulting cohesive law is

t ¼ t
δ

β2δτ þ δσ
� � ð5Þ

β being a suitable material parameter that defines the ratio between the shear and the

normal critical components. For more details, see [14].

Governing equations and their discretization in space and time

Taking into account the cohesive forces and the symbols of Figure 1, the linear momen-

tum balance of the mixture, discretized in space with finite elements according to the

standard Galerkin procedure [28] is written as

M _v þ
Z
Ω

BTσ″dΩ−Qp−f 1ð Þ−
Z
Γ ′

Nuð ÞTc dΓ ′ ¼ 0 ð6Þ

where c is the cohesive traction on the process zone as defined above.

The fully saturated medium surrounding the fracture has constant absolute permeability,

while for the permeability within the crack, the Poiseuille or cubic law is assumed. This

permeability does not depend on the rock type or stress history but is defined by crack

aperture only. Deviation from the ideal parallel surface conditions causes only an apparent

reduction in flow and can be incorporated into the cubic law, which reads as [29]

kij ¼ 1
f

w2

12
ð7Þ

w being the fracture aperture and f a coefficient in the range 1.04 to 1.65 depending on
the solid material. In the following, this parameter will be assumed as constant and

equal to 1.0. Incorporating the Poiseuille law into the weak form of water mass balance

equation within the crack and discretizing in space by means of the finite element

method results in

~Hpþ ~S _p þ
Z
Γ ′

Npð ÞTqw dΓ ′ ¼ 0 ð8Þ

With

~H ¼
Z
�Ω

∇Npð ÞT w2

12μw
∇Np d �Ω ð9Þ

~S ¼
Z
�Ω

Npð ÞT 1
Kf

Np d �Ω ð10Þ

μw is the dynamic viscosity and Kf the bulk modulus of the fluid. The last term of (8)
represents the leakage flux into the surrounding porous medium across the fracture
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borders and is of paramount importance in hydraulic fracturing techniques. This term

can be represented by means of Darcy's law using the medium permeability and pres-

sure gradient generated by the application of water pressure on the fracture lips. No

particular simplifying hypotheses are hence necessary for this term. This equation can

be directly assembled at the same stage as the mass balance Equation 11 for the satu-

rated medium surrounding the crack, because both have the same structure: only the

parameters have to be changed in the appropriate elements depending whether they

belong to the fracture or to the surrounding medium.

The discretized mass balance equation for the porous medium surrounding the

fracture is

QT _u þHpþ S _p−f 2ð Þ−
Z
Γ ′

Npð Þ
T

qwdΓ ′ ¼ 0 ð11Þ

where qw represents the water leakage flux along the fracture toward the surrounding

medium of Equation 7. This term is defined along the entire fracture, i.e. the open part

and the process zone. It is worth mentioning that the topology of the domains Ω and
�Ω changes with the evolution of the fracture. In particular, the fracture path, the pos-

ition of the process zone and the cohesive forces are unknown and must be regarded as

products of the mechanical analysis.

Discretization in time is then performed with time discontinuous Galerkin approxi-

mation following [30,31]. Denoting with In ¼ t−n; t
þ
nþ1

� �
a typical incremental time step

of size Δt = tn + 1 − tn, the weighted residual forms are

Z
In

δvT M _v þ Ku−Qp−f 1ð Þ
� �

dtþ
Z
In

δuTK _u−vð Þdtþ
þδuT

tnK uþ
n −u

−
n

� �
dtþ δvT

		 		
tn
M vþn −v

−
n

� � ¼ 0
ð12Þ

Z
In

δpT QTv þ SsþHp−f 2ð Þ
� �

dtþ
Z
In

δpTS _p−sð Þdtþ

þδpT tnS pþ
n −p

−
n

� �
dt ¼ 0

		
ð13Þ

with the constraint conditions

_u−v ¼ 0
_p−s ¼ 0

ð14Þ

Subscripts −/+ indicate quantities immediately before and after the generic time

station. Field variables and their first time derivatives at time t ∈ [tn, tn + 1 ] are in-

terpolated by linear time shape functions, and the following discretized equations

are obtained

un ¼ u−
n þ

Δt
2

vþn −v
−
nþ1

� �
unþ1 ¼ u−

n þ
Δt
2

vþn þ v−nþ1

� �
sn ¼ 1

Δt
pnþ1 þ 3pn−4p

−
n

� �
snþ1 ¼ 1

Δt
pnþ1 þ 3pn þ 2p−n
� �

ð15Þ
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1
2
M−

5
36

Δt2K

� �
vn þ 1

2
Mþ 1

36
Δt2K

� �
vnþ1 þ Δt

3
Qpnþ

þΔt
6
Qpnþ1 ¼ −

Δt
2
Ku−

n þMv−n þ
Z
In

N1 tð Þ f 1ð Þ dt

−
1
2
M−

7
36

Δt2K

� �
vn þ 1

2
Mþ 5

36
Δt2K

� �
vnþ1 þ Δt

3
Qpnþ

þΔt
3
Qpnþ1 ¼ −

Δt
2
Ku−

n þ
Z
In

N2 tð Þ f 1ð Þ dt

Δt
3
QTvn

Δt
6
QTvnþ1 þ 1

2
Sþ Δt

3
H

� �
pn þ

1
2
Sþ Δt

6
H

� �
pnþ1 ¼

¼ Sp−
n þ

Z
In

N1 tð Þ f 2ð Þ dt

Δt
6
QTvn

Δt
3
QTvnþ1 þ � 1

2
Sþ ΔtH

� �
pn þ

1
2
Sþ Δt

3
H

� �
pnþ1 ¼

Z
In

N1 tð Þ f 2ð Þ dt

ð16Þ

The nodal displacement, velocity and pressure, u−
n , v

−
n and p−

n , respectively, for the
current step coincide with the unknowns at the end of the previous one, hence are

known in the time marching scheme and coincide with the initial condition for the first

time step. The system of algebraic equations is solved with a monolithic approach using

an optimized non-symmetric sparse matrix algorithm. The number of unknowns is

doubled with respect to the traditional trapezoidal method.

In a quasistatic situation, adopted for the examples, the submatrices of the above

equations are the usual ones of soil consolidation [28], except for

_f 1ð Þ ¼
Z
Ω

Nuð Þ
T

ρ _b dΩþ
Z
Γ t

Nuð Þ
T
_t dΓ þ

Z
Γ ′

Nuð Þ
T

_c dΓ ′ ð17Þ

where _c is the cohesive traction rate and is different from zero only if the element has

a side on the lips of the fracture Γ ′. Given that the liquid phase is continuous over the

whole domain, leakage flux along the opened fracture lips is accounted for through the

H matrix together with the flux along the crack. Finite elements are in fact present

along the crack (not shown in Figure 1), which account only for the pressure field and

have no mechanical stiffness. In the present formulation, non-linear terms arise

through cohesive forces in the process zone and permeability along the fracture.

Fracture advancement and refinement strategy

Because of the continuous variation of the domain as a consequence of the propaga-

tion of the cracks, also the boundary Γ′ and the related mechanical conditions change.

Along the formed crack edges and in the process zone, boundary conditions are the

direct result of the field equations, while the mechanical parameters have to be up-

dated. The following remeshing techniques account for all these changes [15,32].

For the fracture nucleation and advancement, the Rankine criterion is used. More

than one crack can open and fractures can also branch. Fracture forms and advances if

the maximum principal stress exceeds in a point the fixed threshold. The fracture ad-

vancement procedure differs for 2D and 3D situations: in 2D, the fracture follows dir-

ectly the direction normal to the maximum principal stress, while in 3D, the fracture

follows the face of the element around the fracture tip which is closest to the normal
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direction of the maximum principal stress. In this last case, the fracture tip becomes a

curve in space (front). The advancement of a fracture creates new nodes: in 2D, the

resulting new elements for the filler at the front are triangles, while in 3D situation,

they are tetrahedral. If an internal node along the process zone advances in a 3D set-

ting, a new wedge element results in the filler [15].

At each time station tn, j successive tip (front) advancements are possible until the Ran-

kine criterion is satisfied (Figure 2). Their number in general depends on the chosen time

step increment Δt, the adopted crack length increment Δs and the variation of the applied

loads. This requires continuous remeshing with a consequent transfer of nodal vectors from

the old to the continuously updated mesh by a suitable operator vm(Ωm + 1) =ℵ(vm(Ωm)).

For momentum and energy conservation, the solution is repeated with the quantities of

mesh m but re-calculated on the new mesh m+ 1 before advancing the crack tip [33].

Three types of refinement are needed to obtain satisfactory results: the refinement in

space in general, the satisfaction of an element threshold number over the process zone

and a refinement in time. For refinement and de-refinement in space, the Zienkiewicz-

Zhu error estimator is used [34]. Fluid lag, i.e. negative fluid pressures at the crack tip,

may arise in the case of injection if the speed at which the crack tip advances is sufficiently

high so that for a given permeability water cannot flow in fast enough to fill the created

space. This as well as mesh-independent results can be obtained numerically only if an

element threshold number is satisfied over the process zone. This number is given by the

ratio of elements over the process zone and its length and can be estimated in advance

from the problem at hand and the expected process zone. The number of elements over

the process zone is of paramount importance and has not received sufficient attention by

many authors. It is a sort of object-oriented refinement and is extensively dealt with in

[14]. Adaptivity in time is obtained by means of the adopted discontinous Galerkin

method in the time domain (DGT) [33]. The error of the time-integration procedure can

be defined through the jump of the solution

unh i ¼ un−u−
n

vnh i ¼ vn−v−n
pnh i ¼ pn−p

−
n

ð18Þ
Figure 2 Multiple advancing fracture step at the same time station. Reprinted from [15], Copyright
(2012), with permission from Springer.
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at each time station, i.e. the difference between the final point of time step n − 1 and

the first point of time step n. By adopting the total energy norms as error measure, we

define the following terms:

euk kn ¼ vnh iTM vnh i þ unh iTK unh i
� � 1=2

eu;p


 



n ¼ unh iTQ pnh i
� � 1=2

ep


 



n ¼ pnh iTQT unh i þ pnh iTH pnh iΔt þ pnh iTPT pnh i
� � 1=2

ek k
n
¼ max euk kn; eu;p



 


n; ep


 



n

n o
ð19Þ

Error measures defined in Equation 19 account at the same time for the cross effects
among the different fields and the ones between space and time discretizations.

The relative error is defined as in [30]

ηn ¼
ek kn
ek kmax

ð20Þ

where ‖e‖max is the maximum total energy norm ek kmax ¼ max ek ki
� �

; 0 < i < n

When η > ηtoll, the time step Δtn is modified and a new Δt′n < Δtn is obtained accord-

ing to

Δt′n ¼
θηtoll
η

� �1=3

Δtn ð21Þ

where θ < 1.0 is a safety factor. If the error is smaller than a defined value ηtoll,min, the

step is increased using a rule similar to Equation 21.

As it stands, the refinements in space and time are carried out sequentially, starting

with the space refinement, followed by the element threshold number and then the re-

finement in time. An eye is kept on the satisfaction of the discrete maximum principle

[35] which states that it is not possible to refine in time below a certain limit depending

on the material properties without also refining in space. A proper functional would be

needed to link all the three refinements. A flow chart of the numerical procedure is

given in the ‘Appendix’.

Results and discussion
First, we show for comparison purposes the results of cohesive fracture propagation in

a thermo-elastic medium, a coupled problem solved with the method for fracture ad-

vancement outlined above [19]. The method itself of the crack tip advancement does

not introduce steps, once mesh-independent results are achieved. This was also found

in static problems (not shown here) such as the three-point bending test, the four-

point shear test and the case of a plate with a circular hole. The problem shown here

evidences also the importance of the element threshold number, i.e. the number of ele-

ments over the process zone. A three-point bending test is performed on a bimaterial

specimen subjected to a thermo-mechanical loading [36]. One part of the sample is

made of aluminium 6061 and the other of polymethylmethacrylate (PMMA), bonded

with methacrylate adhesive. The geometry is presented in Figure 3: the sample has a

notch with a sharp tip of 1-mm width and 30-mm height shifted 3 mm from the inter-

face in the PMMA zone. The two materials present very different Young's moduli and



Figure 3 Geometry of the three-point bending test for a bimaterial specimen. Reprinted from [19],
Copyright (2004), with permission from Elsevier.
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thermal expansion coefficients, so that, when the system is subjected to heat, stresses

arise near the interface as a result of the mismatch in thermal expansion.

Two different experiments are reported in [36]. In the first, at a room temperature of

25°C, a load was applied 3 mm from the interface in the PMMA zone (Figure 3) to trig-

ger the fracture process. The loading rate was very low and the resulting speed of crack

propagation at the initial stages was also quite slow, so that quasistatic conditions can

be assumed. The crack path was individuated, and stresses near the crack tip in the

PMMA were measured using a shearing interferometer.

In the second experiment, the same operations were performed when the

temperature of the aluminium was 60°C in steady state conditions. To reach these con-

ditions, a cartridge heater (Q in Figure 3) was inserted into the aluminium part near

the external vertical side. The variation in time of the PMMA temperature was checked

before the fracture test, which was performed when steady state conditions were

reached. The temperature of PMMA was recorded at the crack tip location, at 5 and

7 mm from the interface. Also in this case, the crack path was spotted. From the differ-

ences between the two situations, the authors gathered the thermal effects, which were

independent of the magnitude of the applied mechanical load.

In the two experiments, the crack propagation trajectories differ as shown in

Figure 4a,b where a zoom of the fractured specimens in correspondence of the notch is

presented. In particular, the crack path is closer to the interface when the temperature

is higher. The numerical results are shown in Figure 4c. The agreement is remarkable,

see also [19].

Application of Barenblatt's theory [22] for calculation of characteristic cohesive zone

size l yields for PMMA

ℓ ¼ πEGc

8 1−ν2ð Þσ2
0
≅0:75 mm ð22Þ

Our numerical results (0.8 mm) are in good accordance with this value. From this
value, the choice of the crack tip advancement length can be estimated. It should be

such that the heuristically determined element threshold number is satisfied (five ele-

ments in the thermo-mechanical case). Using linear elements of decreasing size, the

value of the force F (Figure 3), corresponding to an applied vertical displacement on



Figure 4 Zoom of the notch of the specimen with crack path trajectories. (a, b) Experimental results
(reproduced from [36]). (c) Numerical results: case A, uniform temperature (25°C); case B, thermal load with
E, σ0, δσcr varying with temperature; and case C, thermal load with E = E(25°C), σ0 = σ0(25°C), δσcr = δσcr
(25°C). Reprinted from [19], Copyright (2004), with permission from Elsevier.
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the same point, is calculated. Results are summarized in Figure 5. The peak of the ex-

ternal load and the softening branch are mesh independent once the process zone is

subdivided into at least five elements with edges of 0.15 mm or smaller. This situation

is handled by the mesh generator simply by locating an element source [32] at the

crack tip. Its weight may be a priori stated and/or can be a posteriori updated during

the adaptive remeshing procedure once the length of the process zone has been deter-

mined. What is important here is that the diagrams in this coupled problem are

smooth reasonably once mesh-independent results are obtained.

The next application deals with a hydraulically driven fracture due to fluid pumped

at constant flow rate Q into a well in 2D conditions (plane strain) [14]. Figure 6 shows

the geometry of the problem together with the initial finite element discretization. A

notch with a sharp tip is present along the symmetry axis of the analyzed area.

The effects of combined spatial/temporal discretizations are clearly seen in Figure 7,

where the crack length is drawn versus time for different tip advancements, Δs, and

time step increments, Δt. The correct time history (case E) is obtained by simultan-

eously reducing these two parameters, whereas the reduction of only one discretization

parameter leads to errors (about ±20%) even using small tip advancement, if compared

to the crack length. Again, the importance of the element threshold number is evident

for the choice of Δs (the length of the process zone according to Equation 22 is 0.8 m,

and about 30 elements are needed over it). It clearly appears that the crack tip velocity

is very mesh sensitive. Hence, the element threshold number must be satisfied to obtain

mesh-independent results.

A lower number of elements results in wrong crack tip velocity, and the possible de-

velopment of fluid lag may be missed [14]. Fluid lag corresponds to negative pressure



Figure 5 External force vs. vertical displacement and mesh size. Reprinted from [19], Copyright (2004),
with permission from Elsevier.
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in the process zone and determines hence different body forces (see Equation 6). The

distribution of the pressure over the fracture length at time station 10 min is shown in

Figure 8 for the following three combinations of dynamic viscosity and injection rate:

μw = 1 × 10−9 MPa s, Q = 0.0001 m3/s; μw = 1 × 10−11 MPa s, Q = 0.0001 m3/s; and μw =

1 × 10−9 MPa s, Q = 0.0002 m3/s. The fracture length clearly varies with the chosen

data. For the first combination, the pressure at the fracture tip goes almost to zero,

while for lower values of μw, the pressure is almost constant. For high μw and doubled

injection rate, cavitation occurs.

The third case deals with the benchmark exercise A2 proposed by ICOLD [37]. The

benchmark consists in the evaluation of failure conditions as a consequence of overtop-

ping wave acting on a concrete gravity dam. Contrarily to the previous example here,

we have increasing pressure. The geometry of the dam is shown in Figure 9 together
Figure 6 Problem geometry for water injection benchmark and overall discretization. Reprinted from
[14], Copyright (2006), with permission from Elsevier.



Figure 7 Crack length time history for μw = 1 × 10−9 MPa s and Q = 0.0001 m3/s. Reprinted from [14],
Copyright (2006), with permission from Elsevier.
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with boundary conditions and an intermediate discretization. Differently from the ori-

ginal benchmark, the dam concrete foundation is also considered, which has been as-

sumed homogeneous with the dam body. In such a situation, the crack path is

unknown. On the contrary, when a rock foundation is present, the crack naturally de-

velops at the interface between the dam and foundation. In Figure 9 also, the influence

of the viscosity on the crack direction is evidenced (circle).

The initial condition is obtained under self-weight and the hydrostatic pressure due

to water in the reservoir up to a level of 52 m. From this point, the water level in-

creases until the overtopping level is reached (higher than the dam crest [14]). The in-

crease of water level in the reservoir is specified in days according to the benchmark.

For an intermediate situation, the principal stress contours and the cohesive forces

are shown on Figure 10. Also, fluid lag has been obtained for this situation, not shown

in the picture (see [14]). The crack mouth opening displacement versus days is depicted

in Figure 11 for different values of the crack tip advancement. The smallest value corre-

sponds to the proper element threshold number. Clearly, stepwise advancement can be

observed with some clustering of the steps.

The effects of the stepwise advancement can also be felt at great distance from the

actual crack: the horizontal displacements on the dam crest are effected, as can be seen

from Figure 12. Only the diagram for the purely elastic solution (no crack) is smooth.

Note that here the vertical scale is logarithmic and in the abscissa appear the time

steps, not the actual time. This is the reason why the diagram for the elastic case is

above the others.

For a similar problem, a 3D solution has been obtained in [15]. In Figure 13, the

mesh, the fracture, the process zone and the stress contours are shown when the frac-

ture length is about 15 m corresponding to an intermediate step of the analysis when

the water level is 80 m. The horizontal displacement of the dam crest is drawn versus

time in Figure 14. The following situations are considered: no fracture at all (elastic);



Figure 8 Distribution of the fluid pressure over the fracture length. At time station 10 min for the
combinations of dynamic viscosity and injection rate: μw = 1 × 10−9 MPa s, Q = 0.0001 m3/s (red circles);
μw = 1 × 10−11 MPa s, Q = 0.0001 m3/s (green diamonds); and μw = 1 × 10−9 MPa s, Q = 0.0002 m3/s
(white squares).

Figure 9 Problem geometry for ICOLD benchmark and calculated crack positions. Reprinted from
[14], Copyright (2006), with permission from Elsevier.
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Figure 10 Zoom near the fracture on maximum principal stress contour and cohesive forces.
Reprinted from [14], Copyright (2006), with permission from Elsevier.
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dry fracture (fracture), i.e. water pressure acts only on the dam, not on the crack lips;

hydrostatic water pressure in the crack, constant over the crack length (hydraulic

fracture); and fully coupled solution with water pressure varying over the crack length

(u-p). The last one has fluid exchange between the crack and surroundings. The re-

sults for the last case correspond to an intermediate value between the others because

the pressure is diminishing towards the crack tip, reaching even negative values there

(cavitation).
Figure 11 Crack mouth opening displacement versus time (days) for different values of the crack
tip advancements (mm).



Figure 12 Horizontal displacements versus time step of the dam crest. For different values of the
crack tip advancements (mm) and without fracture (elastic).
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The relative variations of the horizontal crest displacements according to

uk k ¼ ui
uel

−1
� �

⋅100 ð23Þ

with ui referring to the studied cases and uel to the elastic solution, are drawn in

Figure 15. The largest steps correspond to the situations where fluid is present in the

crack and may have pressure exchange (consolidation) with the material surrounding
Figure 13 Mesh, fracture, process zone and stress contours. With a fracture length of about 15 m
corresponding to an intermediate step of the analysis when the water level is 80 m. Reprinted from [15],
Copyright (2012), with permission from Springer.



Figure 14 Horizontal displacement of the dam crest versus time. No fracture at all (elastic); dry fracture
(fracture), i.e. water pressure acts only on the dam, not on the crack lips; hydrostatic water pressure in the
crack, constant over the crack length (hydraulic fracture); and fully coupled solution with water pressure
varying over the crack length and fluid exchange between the crack and surroundings (u-p).
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the process zone. Note that these variations are felt on the dam crest, while the

pressure-induced fracturing happens on the bottom of the dam. The 3D results have

however only qualitative value because the element threshold number would require

finer meshes over the cohesive zone which makes the solution very expensive (ele-

ments of about 300 mm minimum side length and time steps of a mean value of

4 days were used).

In all three examples of hydraulic fracturing, the fracture site is not easily access-

ible. However, the fact that the effects of the stepwise advancement can be felt also at

distance as shown in two examples would make them possible to be monitored re-

motely. Field data and experimental evidence on reservoir rocks and large bodies are

still missing. Data could possibly come from fracking sites or from some fracking-

induced earthquakes [3].
Figure 15 Relative displacements versus time at the dam crest.



Figure 16 Flow chart.
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Conclusions
A fully coupled model for pressure-induced cohesive fracture in a saturated porous

medium and its solution by the finite element method has been shown. The model is

of the discrete crack type and requires continuous updating of the mesh as the crack

tip advances. This is achieved with powerful mesh generators. Three types of refine-

ment are necessary to obtain mesh-independent results: a refinement over the domain

of the Zienkiewicz-Zhu type, an element threshold number over the process zone and a

refinement in time, here with DGT. The results show that in case of pressure induced

fracture with pressure exchange and flow between the fracture and the surrounding

medium the crack tip advances stepwise. This was found also by few other authors.

Smooth diagrams are found on the contrary in a thermo-elastic fracture which is a

coupled problem but with stress-free fracture surfaces. From a comparison of results

obtained with different methods by other authors, it appears that in some situations a

particular adopted method hides the problems discussed in this paper because the re-

quired refinements clash with the raison d'être of such methods like XFEM or PUFEM

(adoption of rough meshes). This is the reason why ‘the physical phenomenon chal-

lenges the numerical scheme’ [18] and why several authors dealing with hydraulic
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fracturing have not noticed the peculiar behaviour shown here. Also, two-step proce-

dures may introduce some bias in the solution. Two different explanations are found in

the literature for the discussed phenomena: one invokes pressure drop [2] and the

other pressure peak [24] after crack advancement. The respective loading conditions

are different, but the question deserves further scrutiny. Finally, the stepwise advance-

ment may be relevant for earthquake engineering, see e.g. the resemblance between the

obtained data of [2] and magnitude records of earthquakes. In many earthquake-prone

regions, there is plenty of water available at the level where the rupture takes place

[38,39]. The problem solved in [17] has been solved again with XFEM and finer mesh

in 40] and the steps in the fracture advancement featured in [17] disappeared. This im-

plies that XFEM yields a smooth solution for a phenomenon which in nature is not

smooth: as shown in [2] hydraulic fracturing exhibits avalanche behaviour and hints of

Self-Organized Criticality.

Appendix
The flow chart of Figure 16 shows the numerical procedure adopted with particular

emphasis on the refinement part.
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