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Background
Over the past few decades, researchers have shown keen interest in the solutions of 
nonlinear partial differential equations (PDEs).In the study of nonlinear physical phe-
nomena, the investigation of solitary wave solutions [1–44] of nonlinear wave equa-
tions shows an important role. Scientific problems arise nonlinearly in numerous fields 
of mathematical physics, such as fluid mechanics, plasma physics, solid-state physics 
and geochemistry. Due to exact interpretation of nonlinear phenomena, these problems 
have gained much importance. However, in recent years, a variety of effective analyti-
cal methods has been developed to study soliton solutions of nonlinear equations, such 
as Backlund transformation method [1], tanh method [2–6], extended tanh method [7–
12], pseudo-spectral method [13], trial function [14], sine–cosine method [15], Hirota 
method [16], exp function method [17–25], (G′

/G)-expansion method [26–30], homo-
geneous balance method [31, 32], F-expansion method [33–35] and Jacobi elliptic func-
tion expansion method [36–38]. Ma et al. [39–44] established the complexiton solutions 
for Toda lattice equation. The theme of the method is that the exact solutions of nonlin-
ear evolution equations can be articulated by exp(−ϕ(η)), where ϕ(η) gratifies the ordi-
nary differential equation (ODE):

where η = x − Vt.

(1)
(

ϕ′(η)
)

= exp(−ϕ(η))+ µ exp(ϕ(η))+ �

Abstract 

In this article, a technique is proposed for obtaining better and accurate results for 
nonlinear PDEs. We constructed abundant exact solutions via exp(−ϕ(η))-expansion 
method for the Zakharov–Kuznetsov-modified equal-width (ZK-MEW) equation and 
the (2 + 1)-dimensional Burgers equation. The traveling wave solutions are found 
through the hyperbolic functions, the trigonometric functions and the rational func‑
tions. The specified idea is very pragmatic for PDEs, and could be extended to engi‑
neering problems.
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Explanation of exp(−ϕ(η))‑expansion method
Now, the exp(−ϕ(η))-expansion method will be explained for constructing traveling 
wave solutions. Consider the general nonlinear partial differential equation for u(x, t) is 
given by,

where u(η) = u(x, t), φ is a polynomial of u and its derivatives. Solving (2), the following 
steps are as.

Step 1 We Combine the variables by η,

where V is the speed of wave. Using Eqs. (3, 2) reduced to the following ODE for u = u(η)

Step 2 The solution of Eq. (4) can be articulated as

where an0 ≤ n ≤ M are constants such that an �= 0 and ϕ(η) satisfies Eq. (1). Our solu-
tions now depend on the parameters involved in (1).

Family 1: When �2 − 4µ > 0, we have

Family 2: When �2 − 4µ < 0, we have

Family 3: When �2 − 4 µ > 0 µ = 0 and � �= 0,

Family 4: When �2 − 4 µ = 0, � �= 0, and µ �= 0,

Family 5: When �2 − 4 µ = 0, � = 0, and µ = 0,

Step 3 By considering the homogenous principal, in Eq.  (4). Considering Eqs.  (1, 4, 5), 
we have eMϕ(η). We get algebraic equations with an,V , �,µ, after comparing the same 

(2)φ(u,ut ,ux,utt ,uxx,uxxx, . . .) = 0,

(3)u = u(η), η = x − Vt,

(4)G
(

u,u′,u′′,u′′′,u′′′′, . . .
)

= 0,

(5)u(η) =
M
∑

n=0

an (exp(−ϕ(η)))n,
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powers of eϕ(η) to zero. We put the above values in Eq. (5) and with Eq. (1), we get some 
valuable traveling wave solutions of Eq. (2).

Solution procedure
Zakharov–Kuznetsov‑modified equal‑width equation

Consider the equation,

where α, β and δ are some nonzero parameters. We use u = u(η), η = x + y− Vt, we can 
convert Eq. (11) into an ODE.

where the dash denotes the derivative w. r. t. η. Now integrating Eq. (12), we have,

Using homogenous principle, balancing u′′ and u2, we have

The trial solution of Eq. (12) can be stated as,

where a2 �= 0, a1 and a0 are constants, while �,µ are any constants.
Putting u,u′,u′′,u2 in Eq. (13) and comparing, we get,

By solving the algebraic equations, the required solution is given below.

where � and µ are any constants.
Now putting the values in Eq. (14), we obtain

where η = x − Vt. By putting (6–10) in (16), we obtain the solutions which are given below.

Case 1 When �2 − 4µ > 0 and µ �= 0, we have,

(11)ut + α
(

un
)

x
+

(

βuxt + δuyy
)

x
= 0,

(12)−Vu′ − βVu′′′ + δu′′′ + 2αuu′ = 0,

(13)−Vu− βVu′′ + δu′′ + αu2 + C = 0,

2M = M + 2,

M = 2.

(14)u(η) = a2(exp(−ϕ(η)))2 + a1(exp(−ϕ(η)))+ a0,

(15)

αa20 + δa1µ�+ C − 2βVa2µ
2 − βVa1µ�+ 2δa2µ

2 − Va0 = 0,

2αa0a1 + δa1�
2 + 2δa1µ+−2βVa1µ− 6βVµ�− βVa1�

2 + 6δa2µ�− Va1 = 0,

2αa2a1 + 10δa2�+ 2δa1 +−2βVa1 − 10βVa2� = 0,

2αa2a1 + 10a2�+ 2a1 +−2βVa1 − 10βVa2� = 0,

αa22 + 6δa2 − 6βVa2 = 0,
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1
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where η = x − 1
6
αa2+6δ

β
t and where c1 is any constant.

Case 2 When �2 − 4µ < 0 and µ �= 0, we have,

where η = x − 1
6
αa2+6δ

β
t and where c1 is any constant.

Case 3 When µ = 0 and � �= 0, we have,

where η = x − 1
6
αa2+6δ

β
t and where c1 is any constant.

Case 4 When �2 − 4µ = 0, � �= 0, and µ �= 0, we obtain,

where η = x − 1
6
αa2+6δ

β
t and where c1 is any constant.

Case 5 When � = 0, and µ = 0, we have, u5(η) = a0 + a2
(η+c1)

2 , where η = x − 1
6
αa2+6δ

β
t 

and where c1 is any constant.

Graphical demonstration

The graphs are given in Figs. 1, 2, 3, 4 and 5.

(2 + 1)‑dimensional Burger’s equation

Consider the equation,

u2(η) = a0 +
4a2µ

2

(

√

−�2 + 4µtan

(√
−�2+4µ

2 (η + c1)

)

− �

)2
,

u3(η) = a0 +
a2�

2

(

exp (η + c1)
� − 1

)2
,

u4(η) = a0 +
a2(η + c1)

2
�
4

(

2(η + c1)
� + 2

)2
,

(17)ut − uux − uxx − uyy = 0,

Fig. 1  Kink wave solution of u1 when a2 = 1, a0 = 2, y = 0, � = 3, µ = 2, c1 = 1
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where α,β and δ are some nonzero parameters. We have, u = u(η), η = x + y− Vt, we 
can convert Eq. (17) into an ODE.

where dash denotes the derivative w. r. t.η.

(18)−Vu′ − 2u′′ − uu′ = 0,

Fig. 2  Singular kink wave solution u2 when a2 = 10, a0 = 8, y = 0, � = 7, µ = 5, c1 = −10

Fig. 3  Singular kink wave solution u3 when a2 = 1, a0 = 2, y = 0, � = 1, c1 = −1

Fig. 4  Singular kink wave solution u4 when a2 = 3, a0 = 2, y = 0, � = 5,µ = 4, c1 = −2
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Integrating Eq. (18), we have,

Using homogenous principle, balancing the u′ and u2, we have, M = 1. 
The trial solution of Eq. (18) can be stated as,

where a1 �= 0, a0 is a constant, while �,µ are any constants. By putting u,u′,u′′,u2 in 
Eq. (19) and comparing, we get

By solving the algebraic equations, the required solution is given below.

where � and µ are any constants. Now putting the values in Eq. (20), we obtain,

where η = x − Vt.

Now putting (6–10) in (22), we obtain the solutions as.

Case 1 When �2 − 4µ > 0 and µ �= 0, we have,

(19)−Vu− 2u′ −
1

2
u2 + C = 0,

(20)u(η) = a1 (exp(−ϕ(η)))+ a0,

(21)

−
1

2
a20 + 2a1µ+ C − Va0 = 0,

− a0a1 + 2a1�− Va1 = 0,

−
1

2
a21 + 2a1 = 0,

{

� = 1
2

√

V 2 + 2C + 16µ, a0 = −V +
√

V 2 + 2C + 16µ, a1 = 4,
}

(22)u = −V+
√

V 2 + 2C + 16µ+ 4e−ϕ(η),

u6(η) = −1+
√

1+ 2C + 16µ+
8µ

(

−
√

�2 − 4µtanh

(√
�2−4µ
2 (η + c1)

)

− �

) ,

Fig. 5  Singular kink wave solution u5 when a2 = 0.5, a0 = 0.2, y = 0, � = 0.1, c1 = −0.1
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where η = x − Vt and where c1 is any constant.

Case 2 When �2 − 4µ < 0 and µ �= 0, we obtain,

where η = x − Vt and where c1 is any constant.

Case 3 When µ = 0 and � �= 0, we have,

where η = x − Vt and where c1 is any constant.

Case 4 When �2 − 4µ = 0, � �= 0, and µ �= 0, we obtain,

where η = x − Vt and where c1 is any constant.

Case 5 When � = 0, and µ = 0, we have,

where η = x − Vt and where c1 is any constant.

Graphical illustration

The graphs are given in Figs. 6, 7, 8, 9 and 10.

u7(η) == −1+
√

1+ 2C + 16µ+
8µ

(

+
√

−�2 + 4µtanh

(√
−�2+4µ

2 (η + c1)

)

− �

) ,

u8(η) === −1+
√

1+ 2C + 16µ+
4�

(

(η + c1)
� − 1

) ,

u9(η) = −1+
√

1+ 2C + 16µ+
4(η + c1)�

2

(

2(η + c1)
� + 2

) ,

u10(η) = −1+
√

1+ 2C + 16µ+
4

(η + c1)
,

Fig. 6  Kink wave solution u6 when C = 1, a0 = 1, y = 0, � = 3,µ = 1, c1 = 1
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Conclusions
The exp(−ϕ(η))-expansion method has been successfully applied to find the exact solu-
tions of (ZK-MEW) equation and the Burger’s equation. The attained results show that 

Fig. 7  Periodic solution u7(η) when a2 = 2, C = 1, y = 0, � = 1,µ = 2, c1 = −1

Fig. 8  Singular kink wave solution u8 when µ = 1, C = 1, y = 0, � = 3, c1 = −1

Fig. 9  Singular kink wave solution u9 when a2 = 1, C = 1, y = 0, � = 13,µ = 1, c1 = −1
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the proposed technique is effective and capable for solving nonlinear partial differential 
equations. In this study, some exact solitary wave solutions, mostly solitons and kink 
solutions, are obtained through the hyperbolic and rational functions. This study shows 
that the proposed method is quite proficient and practically well organized in finding 
exact solutions of other physical problems.
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