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Background
Human cryptosporidiosis is caused by cryptosporidium protozoan and constitutes a 
large number of gastrointestinal disease usually connected with recreational water use 
as the case in Australia [1, 2] as well as other parts of the world [see e.g. [3–6] and ref-
erences therein]. Cryptosporidiosis is characterized with severe watery diarrhoea; 
however, asymptomatic infection may arise which becomes the source of infection [1]. 
Cryptosporidiosis is transmitted through interaction with contaminated water, food 
and surfaces. Allowing water to get through the mouth into the stomach in recreational 
swimming is the easiest way of contracting the disease. Crypto is extremely infectious 
and if not cured one can get the infection again and may infect others. Cryptosporidium 
is well identified with waterborne transmission mechanism via the faecal–oral path in 
many recreational water facilities. It is established that the rate of infection is very low 
in cryptosporidiosis. For instance, it is estimated that it has a low infective dose ranging 
between 10 and 30 in a healthy adult [7–10]. The disease is capable of resisting to just 
halogen disinfection which constitutes the recommended level for treating water recrea-
tional facilities [11]. If anyone is diagnosed of cryptosporidiosis then the person is likely 
to have a weak immune system which is a symptom of HIV.

Abstract 

Cryptosporidium is associated with waterborne transmission mechanism through 
the faecal–oral path in many recreational water facilities. We investigate the probable 
approximate solution of integer and noninteger systems of nonlinear ordinary differ-
ential equations representing cryptosporidiosis dynamics. The approximate or estimate 
solution is derived through recent developed analytic method, the homotopy decom-
position method (HDM). The algorithm is systemically explained and demonstrated 
with some numerical examples. The numerical results indicate that the approximate 
solution is of continuous function form in the light of noninteger-order derivative. The 
integer-order numerical solution of parameters values varied and investigated which 
show similar solution in each case. The method employed to obtain the solution to this 
problem is robust, easy, reliable and quick in terms of time.
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In this paper, we present an SIR model proposed in [25]. The model is characterized by 
four components which are susceptible human, infected human, recovered human and 
environment where the bacteria live. � is the recruitment rate into the susceptible class. 
Recovered individual may lose their immunity to the disease at the ω. Recovery rate due 
to treatment is denoted by σ. The natural and mortality rates due to the disease are µ and 
ψ , respectively. Ec is the microbe population, and the contact rate of the microbe popula-
tion is denoted by ν. The concentration of microbe population in the environment is rep-
resented by K. The rate of cryptosporidiosis infected to the environment is denoted by 
π. µb is the mortality rate of the microbes. ρ is the rate of contact with the environment

subject to the initial conditions

Mathematical models, in general, are highly nonlinear, and obtaining the exact solution 
usually becomes a challenge. Most researchers resort to numerical solutions. In recent 
times, there have been several analytical approximation techniques to address these 
problems. The assistance of computer-aided techniques is growing at a fast rate and 
numerical simulations have become inevitable. Non-numerical problems are still very 
crucial because of their role in the socioeconomy of every nation (see e.g. [14–17] refer-
ences therein). There are several, however, alternative analytical asymptotic techniques 
which include the nonperturbation modified, Lindstedt–Poincare technique [15], varia-
tion iteration technique [17], Adomian decomposition method [18] and homotopy per-
turbation method [17, 19].

Recently, authors in [13] used HDM to investigate HIV infection of CD4+ T cells and 
obtained approximate solutions and compared the results with other existing methods. 
In their study, they found that HDM is as better as other well-known methods as men-
tioned in the literature. Authors in [20] employed HDM to examine Tuberculosis using 
both integer and fractional derivative and obtained solutions that are of continuous 
functions of the noninteger-order derivative. Author in [20] used HDM to investigate 
cryptosporidiosis model of both integer and fractional order and obtained solutions that 
are continuous functions of the noninteger-order derivative.

The purpose of this paper is to present approximate analytical solutions for the stand-
ard form and fractional aspect of (1) in addition to (2) using the relative new analytical 
method called homotopy decomposition method (HDM).

The paper is organized as follows: In “Background” section , the basic ideas of 
homotopy decomposition method are presented. In “Fundamental information about 
homotopy decomposition method” section, the application of HDM for system for 
cryptosporidiosis population dynamics is presented. “Stability analysis” section deals 
with the application of the HDM for the system of fractional cryptosporidiosis model 
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dynamics. In “Application of the HDM to the model with integer-order derivative” sec-
tion, the conclusion is drawn.

Fundamental information about homotopy decomposition method
To show the basic notion of this method, we take into consideration a universal nonlinear 
nonhomogeneous partial differential equation characterized with the following form [12]:

By focusing on the primary condition, we have

where m denotes the order of the derivative, f represents an identified function, N denotes 
the common nonlinear differential operator, L represents a linear differential operator, 
and m is the order of the derivative. The initial process here is to ensure that the inverse 
operator ∂m/∂tm is applied on both sides of (3) so that we obtain [12]

The multi-integral in Eq. (3) can be reorganized as

So, Eq. (3) can be reformulated as

Employing the homotopy scheme, the solution of the above-mentioned integral equation 
is expressed in series form as follows:

and the nonlinear term can be decomposed by

(2)
∂mU(x, t)

∂tm
= L(U(x, t))+ N (U(x, t))+ f (x, t), m = 1, 2, 3, . . . ,

(3)
∂ i(x, 0)

∂ti
= yi,

∂mU(x, 0)

∂tm−1
= 0 i = 0, 1, 2, . . .m− 2

(4)

U(x, t) =
m−1
∑

k=0

tk

k!
dku(x, 0)

dtk
+

t
∫

0

t1
∫

0

· · ·
tm−1
∫

0

L(U(x, τ ))+ N (U(x, τ ))+ f (x, τ) . . . dt
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t
∫

0
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∫

0

· · ·
tm−1
∫

0

L(U(x, τ ))+ N (U(x, τ ))+ f (x, τ) . . . dt

=
1

(m− 1)!

t
∫

0

(t−τ )m−1L(U(x, τ ))+ N (U(x, τ ))+ f (x, τ) . . . dτ

(6)

U(x, t) =
m−1
∑

k=0

tk

k!
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(m− 1)!
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∫
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(t−τ )m−1L(U(x, τ ))

+ N (U(x, τ ))+ f (x, τ) . . . dt

(7)
U(x, t) =

m−1
∑

k=0

pmUn(x, t),

U(x, t) = lim
p→1

U(x, t, p)

NU(r, t) =
∞
∑

n=1

Pn
Rn(U),
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where p ∈ (0, 1] denotes an implanting parameter and Rn(U) represents the polynomial 
that can be engendered by

The homotopy decomposition method is composed of the decomposition method and 
Abel integral which is given as

with

Matching the term of identical powers of pi leads to solution of different orders. The 
estimate of the approximation is T(x, t) that is precisely the Taylor series presenting the 
exact solution of order m. It is worthy to note that the initial guess or estimate assures the 
uniqueness of the series decompositions [20, 21].

Stability analysis
The stability analysis of a model is very essential, which allows to establish the behaviour 
of the model. The disease-free equilibrium is obtained by setting system 1 to be equal to 
zero and solving 

The linear stability of E0 is determined by applying the next-generation operator tech-
nique [26] on system 1, and the reproduction number is obtained as follows:

Theorem 1  The disease free equilibrium of the model 1, given by R0 , is locally asymp-
totically stable if R0 < 1, and unstable if R0 > 1.

(8)
Rn(U)(U0 . . . ,Un) = 1
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∂n
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[
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∞
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( ∞
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+
∞
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]

dτ

T(x, t) =
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∑

k=0
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E0 =
(

S∗, I∗,R∗,E∗) =
(

�

µ
, 0, 0, 0
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.

R0 =
ν�

√
µb +

√

ν2�2µb + 4K 2πµ2ρ(µ+ σ + ψ))

2Kµ
√
µb(µ+ σ + ψ)

.
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 Proof

Theorem  2   For K = 0, the system 1 has no endemic equilibrium and for K > 0 the 
model exhibits two conditions: a transcritical bifurcation if Rp ≥ 1 and a backward bifur-
cation if Rp < 1.

� �

For more details about the stability analysis of system 1, see [20] reference therein.

Application of the HDM to the model with integer‑order derivative

This section discusses the usage of HDM to derive the set of mathematical equations 
based on cryptosporidiosis population dynamics model. Following the steps involved in 
HDM method, we arrive at the following integral equation;

(10)











S∗ = �+ωR∗

µ+β∗ ,

R∗ = σ I∗

ω+µ
,

E∗ = π I∗

µb
.

(11)q(I∗) = I∗
(

G1(I
∗)2 + G2(I

∗)+ G3

)

= 0

G1 = ρρ(µ(µ+ σ + ψ)+ (µ+ ψ)ψ),

G2 =
Kµbµ(µ+ σ + ψ)

νµb + Kρρ

(

Rp − R0

)

,

G3 = Kµbµ(µ+ ω)(µ+ σ + ψ)(1− R0)

Rp =
(νµb + Kρρ)(Kρρ[µ2 + (µ+ ψ)(σ + ψ)] + µµb(ν + µ)(µ+ σ + ψ + Q))

Kµµb(µ+ σ + ψ)

(12)

p0 = S0(t) = S(0),

p0 = I0(t) = I(0),

p0 = R0(t) = R(0),

p0 = E0(t) = E(0)

(13)

p1 : S1(t) =
t
∫

0

(�+ ωR0(τ )− µS0(τ )−
(

νI0
K+I0

+ ρEc0

)

S0(τ ))dτ , S0(0) = 0,

p1 : I1(t) =
t
∫

0

(

νI0
K+I0

+ σEc0

)

S0(τ )− (µ+ ψ + σ)I0(τ ))dτ , I0(0) = 0,

p1 : R1(t) =
t
∫

0

σ I0(τ )− (µ+ ψ)R0(τ ))dτ , R0(0) = 0,

p1 : E1(t) =
t
∫

0

π I0(τ )− µbE0(τ ))dτ , E0(0) = 0.
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Using integration techniques, we arrived at the following components:

For the purpose of simplification, we let

By applying integrating S1(t), I1(t),R1(t) and E1(t), we have

(14)

pn : Sn(t) =
t

�

0

(�+ ωR(n−1)(τ )− µS(n−1)(τ )

−
n−1
�

j=0

�

νIj

K + Ij
+ ρEcj

�

Sn−j−1(τ )dτ , Sn−1(0) = 0,

pn : In(t) =
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0
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�

νIj

K + Ij
+ σEcj

�

Sn−j−1(τ )− (µ+ ψ + σ)In−1(τ )



dτ , In−1(0) = 0,

pn : Rn(t) =
t

�

0

(σ In−1(τ )− (µ+ ψ)Rn−1(τ )dτ , Rn−1(0) = 0,

pn : En(t) =
t

�

0

(πIn−1(τ )− µbEn−1(τ )))dτ , En−1(0) = 0.

S0(t) = S(0); I0(t) = I(0);R0(t) = R(0);E0(t) = E(0)
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νI0
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+ ρEc0

)

S0

)

t,

I1(t) =
((

νI0
K+I0

+ σEc0

)

S0 − (µ+ ψ + σ)I0

)

t,

R1(t) = (σ I0 − (µ+ ψ)R0)t,
E1(t) = (π I0 − µbE0)t.

(16)

a0 =
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νI0
K+I0

+ ρEc0
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S0

)

,

b0 =
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νI0
K+I0

+ σEc0

)

S0 − (µ+ ψ + σ)I0

)

,

c0 = (σ I0 − (µ+ ψ)R0),

d0 = (π I0 − µbE0).

S2(t) =
t2

2

(

+ωc − µa−
νI0

K + I0
a−

νb

K + b
S0 − aρEc0 − ρdS0

)

= S2(t) =
t2

2
a1

I2(t) =
t2

2

(

νI0

K + I0
a+

νb

K + b
S0 + ρEc0 + ρdS0 − (µ+ ψ + σ)b

)

= I2(t) =
t2

2
b1

R2(t) =
t2

2
(σa− (µ+ ψ)c)

= R2(t) =
t2

2
c1

E2(t) =
t2

2
(πa− µbd)

= E2(t) =
t2

2
d1
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In general, the following recursive formulas are obtained:

where an, bn, cn and dn rely on the fixed set of empirical parameters. It thus, in principle, 
implies that the approximate solution of the system (1) is obtained as

The total human population is assumed to be 140; the initial susceptible human popula-
tion is 120; the initial infected human population is 5 and initial human recovered popu-
lation 15. The initial cryptosporidiosis population is 12. The human recruitment rate is 
� = 0.0004; individual may lose their immunity to the disease at ω = 0.001; recovery 
rate due to treatment is σ = 0.07; natural mortality is µ = 0.00055; mortality rate due to 
the disease is ψ = 0.006; contact rate of the microbe population is ν = 0.5; the microbe 
population is K = 1000; cryptosporidiosis infection contribution to the environment is 
π = 0.045; mortality rate of the microbe is µb = 0.033 and the rate of humans contact 
with the environment is ρ = 0.045.

We make an assumption that there is a constant population. Figure  1 depicts the 
approximate solution of the system (1). In Fig. 1, the susceptible population with time 
decreases as more humans get infected and others die due to natural death. This is envis-
aged in biologically feasible situation. The infected humans in Fig. 1 increase in a short 
period and then decrease. This could be the fact that people get to know about the dis-
ease and try to avoid making contact with the microbe. The recovered humans appeared 
to reduce and could be attributable to difficulty in diagnosing a patient with crypto-
sporidiosis even in the advanced world. The microbe population decreases with time 
and this could be the fact that health authorities may design a problem to fight against 
the microbe. We varied some of the parameters in Fig. 2 in order to observe the dynam-
ics in the integer-order situation. In Fig. 2, susceptible, recovered and microbe popula-
tion are quickly moving towards the origin. However, the infective population in Fig. 2 
is relatively slow moving towards the origin. This is expected as susceptible humans 
get infected and then slowly the infected get recovered. It can be seen from Fig. 2 that 
the microbe population also reduces because people get the awareness and prevent 
themselves. 

(17)

Sn(t) =
tn

n!
an,

In(t) =
t
n

n!
bn,

Rn(t) =
t
n

n!
cn,

En(t) =
t
n

n!
dn,

(18)

Sn(t) =
N
∑

n=0

tn

n!an,

In(t) =
N
∑

n=0

tn

n!bn,

Rn(t) =
N
∑

n=0

tn

n! cn,

En(t) =
N
∑

n=0

tn

n!dn
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Application of the HDM to the model with noninteger‑order derivative
In recent times, fractional calculus has been identified as a powerful to tool to model 
many physical and engineering processes, which are best described in terms of fractional 
differential equation  [12]. It is remarkable to note that the usual standard mathemati-
cal models in the form of integer-order derivatives fall short of vividly describing many 
physical problems. Fractional calculus for the past few years has become indispensable 
in many field of endeavour which include mathematics, biology, chemistry, food science, 
mechanics, electricity, electronics, image processing, control theory and many more. 
Some of the vital topics include fractional filters, computational fractional derivative 
equations, nonlocal phenomena; porous media, biomathematics and fractional phase-
locked loops (see [19, 22–24]).

Fig. 1  Approximate solution for α = 1,β = 1, γ = 1, ξ = 1

Fig. 2  Approximate solution for α = 1,β = 1, γ = 1, ξ = 1
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Properties and definitions

Definition 1 A real function f (x), x > 0, is said to be in the space Cµ,µ ∈ R , if there 
exists a real number p > µ , such that f (x) = xph(x) , where h(x) ∈ C[0,∞), and it is 
said to be in space Cm

µ  if f (m) ∈ Cµ,m ∈ N

Definition 2  The Riemann–Liouville fractional integral operator of order α � 0 , of a 
function f ∈ Cµ,µ � −1,α,β � 0, is defined as follows:

Lemma 1   If m− 1 < α � m,m ∈ N and f ∈ Cm
µ ,µ � 1, then

Definition 3  (partial derivatives of fractional order). Assume now that f(x) is a func-
tion of n variables xii = 1, . . . , n also of class C on D ∈ Rn. We define partial derivative of 
order α for f respect to xi the function

where ∂mxi  is the usual partial derivative of integer-order m.

Approximate solution of fractional version

The system 1 that is transformed into fractional derivative is expressed as

Following the discussion presented earlier, we arrive at the following equations:

JαJβ f (x) = Jα+β f (x)

JαJβ f (x) = Jβ Jα f (x)Jαxγ =
Ŵ(γ + 1)

Ŵ(α + γ + 1)
xα+γ .

DαJα f (x) = f (x),

JαDα f (x) = f (x)−
m−1
∑

k=0

f (k)(0+)
xk

k!
; x > 0

a∂αx f =
1

Ŵ(m− α)

xj
∫

a

(xi − t)m−α−1a∂mxi f (xj)
∣

∣

∣xj=t dt

(19)























































dθ

dtθ
S = �+ ωR(t)− µS(t)−

�

νI

K + I
+ ρEc

�

S(t), 0 < θ ≤ 1

dϑ

dtϑ
I =

�

νI

K + I
+ σEc

�

S(t)− (µ+ ψ + σ)I(t), 0 < ϑ ≤ 1

dυ

dtυ
R = σ I(t)− (µ+ ψ)R(t), 0 < υ ≤ 1

d̟

dt̟
E = π I − µbE, 0 < ̟ ≤ 1

(20)

p0 = S0(t) = S(0),

p0 = I0(t) = I(0),

p0 = R0(t) = R(0),

p0 = E0(t) = E(0)
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The figures depict the solutions obtained for different values of the fractional order 
derivatives. The approximate solutions of the system (1) are shown in Figs. 2, 3, 4 and 
5, 6, 7 respectively. It is obvious from Figs. 2, 3, 4 and 5 that the fractional derivatives 

p1 : S1(t) =
1

Ŵ(θ)

t
∫

0

(t − τ )θ−1×(�+ ωR0(τ )− µS0(τ )

−
(

νI0

K + I0
+ ρEc0

)

S0(τ ),

)

dτ S1(0) = 0,

p1 : I1(t) =
1

Ŵ(ϑ)

t
∫

0

(t − τ )ϑ−1

×
((

νI0

K + I0
+ σEc0

)

S0(τ )− (µ+ ψ + σ)I0(τ )

)

dτ , I1(0) = 0,

p1 : R1(t) =
1

Ŵ(υ)

t
∫

0

(t − τ)υ−1 × (σ I0(τ ) − (µ+ ψ)R0(τ ))dτ , R1(0) = 0,

p1 : E1(t) =
1

Ŵ(̟)

t
∫

0

(t − τ)̟ × (π I0(τ ) − µbE0(τ ))dτ , E1(0) = 0.

pn : Sn(t) =
1

Ŵ(θ)

t
�

0

(t − τ)θ−1 ×
�

�+ ωR(n−1)(τ )− µS(n−1)(τ )

−
n−1
�

j=0

�

νIj

K + Ij
+ ρEcj

�

Sn−j−1(τ )



dτ , Sn−1(0) = 0,

pn : In(t) =
1

Ŵ(ϑ)

t
�

0

(t − τ )ϑ−1×





n−1
�

j=0

�

νIj

K + Ij
+ σEcj

�

Sn−j−1(τ )





− (µ+ ψ + σ)In−1 (τ ))dτ , In−1(0) = 0

pn : En(t) =
1

Ŵ(υ)

t
∫

0

(t − τ )υ−1 × (π In−1(τ ) − µbEn−1 (τ )))dτ , En−1(0) = 0,

pn : Rn(t) =
1

Ŵ(̟)

t
∫

0

(t − τ )̟−1 × (σ In−1(τ ) − (µ+ ψ)Rn−1 (τ ))dτ , Rn−1(0) = 0.
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approximate solutions far better than that of Fig. 1, which is the integer-order derivative 
approximate solution of the system (1). In Fig. 1, the solutions are quickly converging 
towards the time axes but in Figs. 2, 3, 4 and 5 one can observe a continuous solution 
as they move away from being asymptotic to the time axes. The numerical solutions 
indicate that the approximate solutions are of continuous functions in character of the 
noninteger-order derivatives. It is worthy of interest to note that the usual mathematical 

Fig. 3  Approximate solution for α = 0.5,β = 0.65, γ = 0.25, ξ = 0.75

Fig. 4  Approximate solution for α = 0.5,β = 0.95, γ = 0.95, ξ = 0.35
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models of integer-order derivatives such nonlinear models usually fall short in many 
instance in terms of vivid description of the situation. It is prudent, therefore, to entreat 
people to make use of fractional models in order to vividly represent problems as it is in 
their natural settings.  

Conclusion
The cryptosporidiosis model presented in this paper was investigated in the instances 
of both integer- and noninteger-order derivatives perspective. The model was solved 
using a recently developed and iterative technique called homotopy decomposition 

Fig. 5  Approximate solution for α = 0.02,β = 0.5, γ = 0.5, ξ = 0.95

Fig. 6  Approximate solution for α = 0.5,β = 0.5, γ = 0.5, ξ = 0.5
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method. The detailed fundamental characteristics of HDM are presented. The noninte-
ger approximate solutions turn to be increasing continuous functions of the fractional 
derivative. The algorithm for cryptosporidiosis models is very friendly, effective, simple, 
reliable and quick. The numerical results for the both instances exhibit the real biologi-
cal dynamics of the problem solved.
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