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Abstract

Background: A new solution for plastic collapse of a thin annular disk subject to
thermo-mechanical loading is presented.

Methods: It is assumed that plastic yielding is controlled by Hill's quadratic orthotropic
yield criterion. A distinguished feature of the boundary value problem considered is
that there are two loading parameters. One of these parameters is temperature, and
the other is pressure over the inner radius of the disk.

Results: The general qualitative structure of the solution at plastic collapse is discussed
in detail.

Conclusions: It is shown that two different plastic collapse mechanisms are possible.
One of these mechanisms is characterized by strain localization at the inner radius of
the disk. The entire disk becomes plastic according to the other collapse mechanism.
In addition, two special regimes of plastic collapse are identified. According to one of
these regimes, plastic collapse occurs when the entire disk is elastic except its inner
radius. According to the other regime, the entire disk becomes plastic at the same
values of the loading parameters at which plastic yielding starts to develop.

Keywords: Thin disks; Plastic collapse; Plastic anisotropy; Thermo-mechanical loading;
Qualitative features of solution
Background
Thin plates and disks with holes and embedded inclusions have many structural appli-

cations. A significant amount of analytical and numerical research for various material

models has been carried out in the area of stress and strain analysis of such structures

(see [1-20] among many others). An excellent review of previous works devoted to the

problem of enlargement of a circular hole in thin plates has been given in [19]. The

assumptions made regarding yield criterion, strain hardening and unloading have a

significant effect on the predicted response and residual stress and strain fields [7].

Even though closed-form solutions involve more assumptions than numerical solutions,

the former are necessary for studying qualitative effects and verifying numerical codes.

Typical qualitative effects under plane stress conditions are the singularity of the velocity

field and non-existence of the solution under certain conditions [9-12,17,20]. These

features of boundary value problems can cause difficulties with their treatment by

means of standard commercial numerical codes. In particular, some specific difficulties

with numerical solution for plane stress problems have been mentioned in [21].
2014 Alexandrov and Pham; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly credited.

mailto:pdchinh@imech.ac.vn
http://creativecommons.org/licenses/by/2.0


Alexandrov and Pham Asia Pacific Journal on Computational Engineering 2014, 1:7 Page 2 of 9
http://www.apjcen.com/content/1/1/7
In the present paper, the effect of temperature and pressure over the inner radius of a

thin hollow disk on plastic collapse is investigated. The outer radius of the disk is fixed.

The state of stress is plane. The classical Duhamel-Neumann law is adopted to connect

the thermal and elastic portions of the strain tensor and stress components. Plastic

yielding is controlled by Hill's quadratic orthotropic yield criterion [22]. It is assumed that

the principal axes of anisotropy coincide with the base vectors of a cylindrical coordinate

system (r, θ, z) whose z-axis coincides with the axis of symmetry of the disk. Therefore,

the boundary value problem is axisymmetric and its solution is independent of the polar

angle. It is shown that the general qualitative structure of the plastic collapse solution is

rather complicated. In particular, two different plastic collapse mechanisms have been

found. According to one of these mechanisms, the plastic collapse occurs because the entire

disk becomes plastic. The other plastic collapse mechanism is characterized by

localization of plastic deformation at the inner radius of the disk.

Statement of the problem

Consider a thin disk of radius b0 with a central hole of radius a0, which is inserted into a

rigid container of radius b0 (Figure 1). The disk is subject to thermo-mechanical loading

by a uniform pressure P over its inner radius and a uniform increase of temperature T

from its initial value. By assumption, both P and T are monotonically increasing functions

of a time-like parameter. Also, P = 0 and T = 0 at the initial instant. Thus, both P ≥ 0

and T ≥ 0. The disk has no stress at the initial instant. It is convenient to introduce a

cylindrical coordinate system (r, θ, z) whose z-axis coincides with the axis of symmetry

of the disk. Then, the equations for the inner and outer radii of the disk are r = a0 and
P

a0

b0

Figure 1 Illustration of the structure.
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r = b0, respectively. The strains are supposed to be small. Let σr, σθ and σz be the normal

stresses in the cylindrical coordinate system. The state of stress is plane, σz = 0. It is evi-

dent that the problem is axisymmetric. In particular, the solution is independent of θ.

Moreover, the normal stresses in the cylindrical coordinates are the principal stresses. The

boundary conditions can be written as

σr ¼ −P ð1Þ
for r = a0 and

ur ¼ 0 ð2Þ
for r = b0. Here ur is the radial displacement.

The sum of the elastic and thermal portions of the strain tensor follows the classical

Duhamel-Neumann law. In the case under consideration, this law reads

εer þ εTr ¼ σr−νσθð Þ
E

þ αT ; εeθ þ εTθ ¼ σθ−νσrð Þ
E

þ αT ; εez þ εTz ¼ −
ν

E
σr þ σθð Þ þ αT ð3Þ

where εer , ε
e
θ and εez are the elastic portions of the strain tensor, εTr , ε

T
θ and εTz are the

thermal portions of the strain tensor, E is Young's modulus, ν is Poisson's ratio and α is

the thermal coefficient of linear expansion. The plastic portions of the strain tensor will

be denoted by ε pr , ε
p
θ and ε pz . The total strain tensor is the sum of its elastic, thermal

and plastic portions. In terms of the radial, circumferential and axial strains, which are

also the principal strains, these relations have the form

εr ¼ ε er þ εTr þ ε pr ; εθ ¼ εeθ þ εTθ þ ε pθ ; εz ¼ ε ez þ εTz þ ε pz ð4Þ

It is assumed that the initiation of plastic yielding is controlled by Hill's quadratic

orthotropic yield criterion [22]. By assumption, the principal axes of anisotropy coincide

with the base vectors of the cylindrical coordinate system. Therefore, the aforementioned

statements that the boundary value problem is axisymmetric and that the principal

directions of the stress and strain tensors coincide with the base vectors of the cylindrical

coordinate system are justified. Under the assumptions made, the yield criterion becomes

G þHð Þσ2
r−2Hσrσθ þ H þ Fð Þσ 2

θ ¼ 1 ð5Þ

where G, H and F are constants which characterize the current state of anisotropy. It is

convenient to rewrite (5) as [12]

σ2r þ p2θ − ησrpθ ¼ σ20 ð6Þ

where

pθ ¼
σθ

η1
; η ¼ 2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G þ Hð Þ H þ Fð Þp ; η1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G þ H

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ F

p ; σ0 ¼ 1
G þ H

ð7Þ

No specific relation between stress and strain (or strain rate) in the plastic zone is

needed for limit analysis. The only non-trivial equation of equilibrium is

∂σr
∂r

þ σr − σθ
r

¼ 0 ð8Þ

Since strains are small,
εr ¼ ∂ur
∂r

; εθ ¼ ur
r

ð9Þ
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Methods
Elastic solution

When both T and P are small enough, the entire disk is elastic. For axisymmetric de-

formation and the plane strain conditions, the equations of linear thermo-elasticity

consisting of (3), (8) and (9) have the general solution in the form

σr
σ0

¼ A
ρ2

þ B;
σθ
σ0

¼ −
A
ρ2

þ B; k−1u ¼ 1−νð ÞBρ− 1þ νð ÞA
ρ
þ τρ ð10Þ

where ρ = r/b0, k = σ0/E, τ = γTE/σ0, u = ur/b0, and A and B are constants of integration.

When the entire disk is elastic, A and B are determined from the solution (10) using

the boundary conditions (1) and (2) as

A ¼ Ae ¼ a2 τ−p 1−νð Þ½ �
a2 1þ νð Þ þ 1−ν

; B ¼ Be ¼ −
1þ νð Þpa2 þ τ

a2 1þ νð Þ þ 1−ν

� �
ð11Þ

where p = P/σ0 and a = a0/b0. As a result of an increase in τ, or p or both, a plastic zone

can appear at the inner radius of the disk.

General stress solution in the plastic zone

In order to find the general stress solution in the plastic zone, it is necessary to combine

the yield criterion (6) and the equilibrium equation (8). The yield criterion is satisfied

automatically by the following substitution [12]:

σr
σ0

¼ 2 cosφffiffiffiffiffiffiffiffiffiffi
4−η2

p ;
pθ
σ0

¼ η cosφffiffiffiffiffiffiffiffiffiffi
4−η2

p þ sinφ ð12Þ

where φ is a function of ρ. Substituting (12) into (8) leads to the following ordinary

differential equation for φ:

2 sin φ
dφ
dρ

−
2F cosφ
H þ Fð Þ−η1

ffiffiffiffiffiffiffiffiffiffi
4−η2

p
sin φ

� �
ρ−1 ¼ 0 ð13Þ

The general solution to this equation can be found in elementary functions. However,
it is more convenient to write it as

ρ ¼ a exp
Zφ
φa

dβ
Ω βð Þ

2
64

3
75; Ω βð Þ ¼ F

H þ Fð Þ cot β −
η1

ffiffiffiffiffiffiffiffiffiffi
4−η2

p
2

ð14Þ

where β is a dummy variable of integration and φa is the value of φ at ρ = a.

Consider the mechanism of plastic collapse according to which the plastic zone occu-

pies the entire disk. At the instant of plastic collapse, the elastic zone reduces to the

curve ρ = 1 in the ρθ-plane. The general solution (10) is valid in this vanishing elastic

zone, though A and B are not given by (11). Since the stresses σr and σθ as well as the

displacement u must be continuous across the elastic plastic boundary ρ = 1, it follows

from the boundary condition (2) and Equations (10) and (12) that
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1−νð ÞB− 1þ νð ÞAþ τ ¼ 0; Aþ B ¼ 2 cosφmffiffiffiffiffiffiffiffiffiffi
4−η2

p ; B−A ¼ η cosφmffiffiffiffiffiffiffiffiffiffi
4−η2

p þ sinφm

 !
η1

ð15Þ
where φm is the value of φ at ρ = 1. Using Equation (14) this value is determined in

implicit form as

1 ¼ a exp
Zφm
φa

dβ
Ω βð Þ

2
64

3
75 ð16Þ

Using (1) and (12) yields

2 cosφaffiffiffiffiffiffiffiffiffiffiffiffi
4− η2

p ¼ −p ð17Þ

Taking into account this equation, the solution to the system of Equations (15) and
(16) gives a relation between p and τ when the entire disk becomes plastic. However, a

difficulty is that this system may have no solution.

General structure of the solution at plastic collapse

It will be seen later that the set of parameters at which the plastic zone starts to develop is

also of importance for understanding the general structure of the solution at plastic

collapse. When plastic yielding begins, the dependence of the radial and circumferential

stresses on φ is given by Equation (12) at ρ = a. Also, the solution (10) with A and B

determined from (11) is valid in the range a ≤ ρ ≤ 1. The stresses and the radial displace-

ment must be continuous across the elastic-plastic boundary ρ = a. Therefore,

Ae

a2
þ Be ¼ 2 cosφ0ffiffiffiffiffiffiffiffiffiffiffiffi

4− η2
p ; −

Ae

a2
þ Be ¼ η1

η cosφ0ffiffiffiffiffiffiffiffiffiffiffiffi
4− η2

p þ sinφ0

 !
ð18Þ

where φ0 is the value of φa at the instant of the initiation of plastic yielding. Since Ae

and Be are expressed through p and τ, the dependence of p on τ corresponding to the

initiation of plastic yielding is determined from Equation (18). Using the imposed

restrictions p ≥ 0 and τ ≥ 0, it is possible to find the range of possible values of φ0,
say φ 1ð Þ

0 ≤ φ0 ≤φ
2ð Þ
0 . A typical dependence of p on τ corresponding to the initiation of

plastic yielding is illustrated in Figure 2. The specific values of parameters used to

find this curve are a = 1/2, ν = 0.3 and G =H = F. It is seen from Figure 2 that there

is a local maximum of the function p(τ) at some value of τ = τk (point k in Figure 2). It

is evident that dp(τ)/dτ = 0 at τ = τk. Replacing Ae and Be in Equation (18) by means of

Equation (11) and differentiating and excluding dφ0 lead to

dp
dτ

¼ 4 sinφ0
2 1− ν− a2 1þ νð Þ½ � sinφ0 þ η1 η sinφ0 −

ffiffiffiffiffiffiffiffiffiffiffiffi
4− η2

p
cosφ0

� �
1− νþ a2 1þ νð Þ½ � ð19Þ

It follows from this equation that the condition dp(τ)/dτ = 0 is equivalent to
φ0 ¼ 0 ð20Þ



Figure 2 Curve corresponding to the initiation of plastic yielding.

Alexandrov and Pham Asia Pacific Journal on Computational Engineering 2014, 1:7 Page 6 of 9
http://www.apjcen.com/content/1/1/7
Moreover, it is evident that the coefficient of the derivative in Equation (13) vanishes

at φ = φ0 if φ0 is determined from (20). In the vicinity of the point φ = φ0 = 0, Equation

(13) transforms to

φ
dφ
dρ

−
F

H þ Fð Þa ¼ 0 ð21Þ

Integrating yields

φ2 ¼ 2F
H þ Fð Þa ρ−að Þ ð22Þ

to leading order. It follows from this equation that the plastic zone cannot develop if

φ0 = 0. For Equation (22) is valid at any elastic/plastic boundary ρ = ρc at which φ = φc = 0.

In this case, the plastic zone occupies the domain a ≤ ρ ≤ ρc. Therefore, ρ − ρc < 0 in the

plastic zone, which contradicts the left-hand side of Equation (22). Putting ρc→ a, it is

possible to conclude that this statement is true at the initiation of plastic yielding as well.

The physical interpretation of this mathematical feature of the solution is that plastic

deformation is localized within a layer of infinitesimal thickness at ρ = a. This corresponds

to another mechanism of plastic collapse as compared to the state in which the entire disk

is plastic. A remarkable property of the set of parameters at point k (Figure 2) is that

the disk losses its load-bearing capacity without any plastic deformation in the domain

a < ρ ≤ 1.

Another point of great interest on the curve shown in Figure 2 is that determined by

the condition φ = φs (point s in Figure 2) where

tanφs ¼
2F

H þ Fð Þη1
ffiffiffiffiffiffiffiffiffiffi
4−η2

p ð23Þ

It is evident that Equation (13) has a special solution φ = φs which is not obtainable
from (14). Since φs is constant, it follows from (12) that the stresses σr and σθ are
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independent of ρ. The physical meaning of this mathematical feature of Equation

(13) is that the plastic zone occupies the entire disk once the plastic zone has initiated

at ρ = a.

If the initiation of plastic yielding corresponds to any point of the curve shown in

Figure 2 other than points k and s, then the elastic/plastic boundary propagates from

the surface ρ = a until the plastic collapse occurs. As in the special cases considered,

the same two plastic collapse mechanisms are possible. In particular, once the value of

φa has become zero, the coefficient of the derivative in (13) vanishes. Equations (21)

and (22) are valid. Therefore, as before, it is possible to arrive at the conclusion that

the solution cannot be extended beyond the value of φa = 0. The corresponding plastic

collapse mechanism is localization of plastic deformation at ρ = a. It follows from (17)

that this plastic collapse mechanism occurs at p = pk where

pk ¼ −
2ffiffiffiffiffiffiffiffiffiffi
4−η2

p ð24Þ

It is obvious that pk is constant. Therefore, in the pτ-space, this plastic collapse

mechanism is interpreted as a straight line parallel to the τ-axis. This line is illustrated

in Figure 3 for ν = 0.3 and G =H = F. The curve corresponding to the initiation of plastic

yielding (curve 1) is tangent to this line at point k.

In order to determine the curve corresponding to the other plastic collapse mechanism,

it is necessary to solve Equation (16) for φm numerically assuming that the value of φa is
given. Then, the value of p immediately follows from Equation (17). Excluding A and B in

Equation (15) yields

τ ¼ 1þ νð Þ cosφmffiffiffiffiffiffiffiffiffiffiffiffi
4− η2

p 1−
ηη1
2

� �
−
η1
2

sinφm

" #
− 1− νð Þ cosφmffiffiffiffiffiffiffiffiffiffiffiffi

4− η2
p 1þ ηη1

2

� �
þ η1

2
sinφm

" #
ð25Þ

Since the value of φm has been found, the corresponding value of τ can be determined
from this equation with no difficulty. Thus, the dependence of p on τ is obtained in
Figure 3 Illustration of the general structure of the solution. Curve 1 corresponds to the initiation of
plastic yielding. Straight line 2 and curve 3 correspond to different plastic collapse mechanisms.
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parametric form. This dependence is illustrated by curve 3 in Figure 3 for a = 1/2, ν = 0.3

and G =H = F. Curves 1 and 3 have the same tangent line at point s.
Results and discussion
Figure 3 is a geometric illustration of the state of plastic collapse. In what follows, it is

assumed that the increase in the loading parameters does not lead to unloading. It is

convenient to divide curve 1 into three segments, namely qk, ks and sw. If the initiation

of plastic yielding occurs at some point of the segment qk, then the only possible mechan-

ism of plastic collapse is localization of plastic deformation at ρ = a. In Figure 3, this

mechanism of plastic collapse corresponds to a point of the line tk. If the initiation of

plastic yielding occurs at some point of the segment sw, then the only possible mechan-

ism of plastic collapse is the fully plastic disk. In Figure 3, this mechanism of plastic

collapse corresponds to a point of the curve sd. Finally, if the initiation of plastic

yielding occurs at some point of the segment ks, then either mechanism of plastic collapse

is possible. Moreover, both mechanisms occur simultaneously if the values of the loading

parameters correspond to point f. A special feature of the solution corresponding to point

k is that the plastic collapse occurs by strain localization when the entire disk is elastic

(except the line ρ = a). A special feature of the solution corresponding to point s is that

the entire disk becomes plastic at the values of the loading parameters corresponding to

the initiation of plastic yielding.
Conclusions
A new semi-analytical solution for the state of plastic collapse of a thin annular plastically

orthotropic disk subject to thermo-mechanical loading has been found. The numerical

part of the solution reduces to solving Equation (16) for φm. Plastic yielding is controlled

by Hill's quadratic orthotropic criterion. The study has emphasized qualitative features of

the plastic collapse solution whose general structure is illustrated in Figure 3. It has been

shown that there are two plastic collapse mechanisms. According to one of these

mechanisms, the load-bearing capacity of the disk is lost because of strain localization at

its inner radius. According to the other plastic collapse mechanism, the entire disk

becomes plastic. In addition to these two general cases, there are three special cases of

great interest for both numerical solutions of similar problems and the interpretation of

elastic/plastic stress solutions for thin plastically anisotropic structures. These special

cases are denoted by symbols k, s and f in Figure 3. If the state of stress corresponds to

point k, then the disk losses its load-bearing capacity by plastic localization at its inner

radius whereas the entire disk (except the inner radius) is elastic. If the state of stress

corresponds to point s, then the disk becomes plastic at the same values of the loading

parameters at which plastic yielding initiates. A distinguished feature of point f is that

both of the aforementioned plastic collapse mechanisms occur simultaneously. It is

expected that these qualitative features of the solution are rather common for a class

of plastically anisotropic thin-walled structures and they can cause some difficulties

with finding numerical solutions for such structures.
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