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Abstract

An approach to the problem of shear localization is proposed. It is based on energy
minimization principles associated with micro-structure developments. Shear bands
are treated as laminates of first order. The micro-shear band is assumed to have a zero
thickness, leading to an unbounded strain field and the special form of the energy
within this micro-band. The energy is approximated by the mixture of potential of two
low-strain and high-strain domains and it is non-convex. The problem of the
non-convex energy arising due to the formation of shear bands is solved by energy
relaxation in order to ensure that the corresponding problem is well-posed. An
application of the proposed formulation to isotropic material is presented. The
capability of the proposed concept is demonstrated through numerical simulation of a
tension test.
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Background

Strain localization phenomena are observed in various materials as narrow zones of
intense shearing, known as shear bands. In many cases, the formation of shear bands is
accompanied by a softening response, characterized by a decrease in strength of the mate-
rial with accumulated inelastic strain, often leading to complete failure [1,2]. Therefore,
research on formation of shear bands has received much attention.

In simulation of strain localization, mesh dependence is the direct consequence of the
ill-posedness of the corresponding boundary value problem [3]. Some enhanced con-
tinuum approaches can be found in literatures such as Cosserat theory [4-6], nonlocal
approaches [7,8], and gradient-enhanced approach [9,10]. In these, an internal length
scale is introduced to reflect certain small-scale effects assumed to be present in shear
bands. The disadvantage of the corresponding numerical models is, however, that the ele-
ment size is required be at least an order of magnitude smaller than the width of shear
zones in order to obtain results independent of the mesh size [11].

The strong discontinuity approach, known as an alternative way to simulate strain local-
ization without the introduction of characteristic lengths, rests upon the assumption
that the displacement field is discontinuous [12-14]. This approach can be categorized
into unregularized and regularized strong discontinuities. For unregularized strong dis-
continuities, the discontinuous displacement field induces an unbounded strain field
having the character of a Dirac-delta distribution [14]. For regularized strong discontinuity
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[11,15], one considers a transition from continuous to discontinuous response by using an
approximation of the Dirac-delta distribution. In both variants, however, it is necessary
to determine the position of a shear band by tracking strong discontinuities.

Furthermore, another possibility to tackle the localization problem is the use of phe-
nomenological plasticity frameworks, in which the shear band and its constitutive
response are embedded in the macroscopic constitutive behavior. Pietruszczak and Xu
[16,17] suggested a theoretical framework for the analysis of brittle materials. Constituent
materials including the intact and localized zone are used to determine the average
mechanical properties through homogenization technique. The constitutive equation in
the region confined by the shear band involves the resultant force rate acting at the
interface and the displacement discontinuity. Amero [18] suggested a procedure for incor-
porating localized small-scale effects of the material response in the large-scale problem,
which is characterized by the standard local continuum. The large-scale regularization
of rate-dependent models is accomplished with the formalism of strong discontinuities
to model effectively the localized dissipation observed in localized failures of solids and
structures. Nguyen et al. [19,20] presented an approach with enhanced kinematics to
capture localized mode of deformation for quasi-brittle materials. The volume element
intersected by a localization band is considered as a two-phase material. The continuity
condition of the traction across the boundary of the localization boundary is enforced to
couple two stresses corresponding to the behavior in the localization zone and the bulk
elastic one.

In recent years a new methodology based on energy relaxation has been developed to
simulate not only the development of material microstructures [21-28] but also localiza-
tion phenomena in plasticity and damage [29-33]. For problems involving microstructure
evolution and localization which is related to various local instability effects such as
buckling, crashing, and cracking, integration of the stress-strain relation leads to a non-
convexity of the potential energy. This behaviour can be seen in many kinds of materials
such as geomaterials, concrete, steel, composite. For detailed expositions of the different
monotone stress-strain curves and the corresponding nonconvex energies consult [34].
Dacorogna [23] showed that minimizers cannot be obtained in nonconvex variational
problems. Instead, the quasiconvex envelope of the nonconvex energy, called the relaxed
energy, should be studied to ensure the existence of minimizers. For the problem of strain
localization, shear bands are treated as laminates of first order in microscopic level. The
advantage of this theory, when applied to the problem at hand, is the natural formation of
shear bands based on the energy minimization principles associated with micro-structure
developments. In the works of Miehe and his coworkers [29-31], the laminate orientation
corresponding to a mode-II simple shear is approximated to the critical direction of non-
convex energy based on the minimization of the determinant of the acoustic tensor. The
width of a micro-shear band is finite. An incrementally variational formulation is based
on an energy storage function and a dissipation function. Relaxation methods have been
applied to crystal plasticity, see [25,35], and the references therein. However, the model
in this paper is different in the sense as the direction of the shear band is variable, while
in crystal plasticity, it is fixed.

Our model is based on the energy relaxation approach and aims to be applicable to any
material which softens towards a critical state, for example geomaterials such as dense
sands and over-consolidated clay. We treat shear bands as special laminates mixing two
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co-existing phases. When a shear band develops, the material at a point located inside the

shear band is viewed as being decomposed into a high-strain and a low-strain domain. We

will introduce specific potentials for the low strain and the high strain material behavior

as depicted in Figure 1b.

This approach has some similarities with that one of Miehe and coworkers [29-31].

There, a non-convex potential obtained as condensed energy of an incremental varia-

tional approach is used. This leads to microstructures given as laminates of finite width.

In our approach, we start from an energy given as the minimum of a low strain and a

high strain potential where the latter one has linear growth only, while Miehe’s energy has

superlinear growth. This leads to degenerated laminates which can be interpreted as true

shear bands.

This work is based on the formulation introduced in [36]. An application of the relax-

ation theory to linear elastic isotropic material and numerical simulations of a tension

test under displacement control are shown. For inelastic materials, we assume that the

elastic deformation is small compared to the inelastic deformation and can be neglected.

A numerical example involving loading and unloading is studied in order to evaluate the

performance of the proposed concept.

Existence of solutions of non-linear boundary value problems and relaxation

The existence of equilibrium solutions of non-linear boundary value problems can be

proved by employing the direct methods of calculus of variations. The basic idea of this

method is the minimization of an energy functional. Let us consider the following total

potential energy:

H(u):/ W(e)dQ—/u-fdQ—/ u-tdA (1)
Q Q Il

where u is the displacement, f is the body force per unit volume, £ is the traction acting

on the part 92, of the surface, and W is the nonlinear elastic strain energy. The strain

field ¢ is given as the symmetric part of the displacement-gradient.

e =Vu. (2)
a. Weak discontinuity b. Strong discontinuity
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Figure 1 Two micro-strains €1, €3 and the relaxed energy Wx. (a) A finite thickness of a micro-shear
band. (b) A zero thickness of a micro-shear band.
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Now we look at solutions of minimization problems of the form
(P) inf{IlI(u)|u =uonod,}. (3)
u

For elastic materials, this corresponds to the well-known principle of minimum of
the potential energy. But inelastic materials can be incorporated as well via a time-
incremental formulation. In this case, W denotes the so-called condensed energy
[27,28,37].

However, for the case of negligible elastic deformations, inelastic materials can be
treated in a completely analogous manner employing the theory established in [27,28].
Fur this purpose, let us decompose the displacement gradient into rotation @ and total
strain € and the latter into its elastic and inelastic parts

Vu=w+ eg +é€1. (4)

If e is negligible, it follows

e1 = Vu. (5)

Let a local dissipation functional for inelastic deformation be given by A (&), see [27,28].
Then the total dissipation functional reads

D(i) = / AED dQ (6)
Q

while the total Gibbs energy is given by

G(u)=—/u~fd$2—/ u-tdA. (7)
Q Qs
The principle of minimum of the dissipation functional, [28], can now be formulated as

inf{ G+ D|it = ondQ,}. )
u

Because the terms (— Jou f a2 — fma u-tdA occurring in G are not dependent
on # and thus do not enter the variation in (8), the functional in (8) can be equivalently
replaced by

Hl(it):/A(éI)dQ—/it~fdQ—/ i-tdA. 9)
Q Q Q0
The principle of minimum of the dissipation potential can now be reformulated as
Py inf{TIi(@#)| i = uon dQ,}. (10)
u

Obviously the structure defined in (5), (9), (10) is completely analogous to that one given
by (2), (1), (3) with u replaced by &z and W (e) by A(ér).

From now on, we will focus our exposition on the elastic case keeping in mind that
everything can be readily transferred to the inelastic case using the scheme explained
above.

If the potential energy W is not quasiconvex in some region of the material body €2, the
functional

I(w) = / W (e) dS (11)
Q

is not sequentially weakly lower semicontinuous, thus the minimizer in problem (P) may
be unattained [23]. This is precisely the case for softening materials. As a result, numerical
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solutions suffer from discretization sensitivity [38]. Following [23], the functional /(x)

may be replaced by a relaxed functional I (u)

IQ(u):/ QW (e)dS2,
Q

where the quasiconvexified functional QW (¢), also called quasiconvex envelope of W or

quasiconvex hull of W, is defined by the minimization problem

QW (e) =infl / W (e + V@) dQ
¢ w

w

for a fixed but arbitrary bounded domain w and every ¢ with ¢ = 0 on dw, herein ¢
is denoted as fluctuation field. Using QW instead of W in (P) ensures the existence of
minimizers [23]. Let us now approximate QW by introducing specific fluctuation fields,

so-called laminates, in Equation 13. We define a scalar function by

X
Pl OSxSSY

—— & < «x <1, periodically repeated,

1-¢
which is depicted in Figure 2a. The fluctuation field is defined by

ox)=ay (n-x), |nl|=1

corresponding to the laminate depicted in Figure 2b, where 7 is the unit normal vector to
laminates and & is an arbitrary vector. Then the gradient of the fluctuation field ¢ has the

following values:

1
—a®mn, ifxbelongsto region 1,

Vow =1 °

a @ n, if x belongs to region 2.

1%

Without restriction we consider a representative volume element as shown in Figure 2b.

Then the definition of quasiconvexified energy (13) reduces to
1
1-¢§

Wr(e) = inf{SW (s + ;(a®n)s> +0-6W (e -

which can be written in the alternative form

Wr(e) =inf{E1W(e1) + &2W(e2) 161, &2, €1, 62; 05§, <1,
E1+& =1, e =£&1+&ey, rank(e; — &) < 1},

(a®n)s>lé,a,n;

Y (x)

e 2 3 x

a. b.

representative volume element (RVE).

Figure 2 Laminates as special fluctuation fields ¢. (a) Scalar function W (x). (b) Laminate of first order and
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where &1 and &, respectively, are two volume fractions of the regions 1 and 2; €; and &5,
respectively, are the strain fields within regions 1 and 2.

In Equation 17, or equivalently 18, we find the definition of the so-called first order
lamination hull [23,39]. This is nothing more than quasiconvexification restricted to first-
order laminates as possible fluctuation fields. The formulation proposed in this paper is
developed based on that very notion.

Shear bands as special laminates
In this paper, localization phenomena are regarded as microstructure developments asso-
ciated with nonconvex potentials. We assume that the micro-structures consist of two
domains: a low-strain domain and a high-strain one. Let us consider a representative
volume element (RVE) obtained by zooming in on the region around point A as shown
in Figure 3. The RVE is split into two volume fractions: the volume fraction & of the
high-strain domain and the volume fraction (1 — &) of the low-strain domain.

When strain localization occurs, the potential (energy) inside the shear band W, is
assumed to satisfy

Wa(§e) = |§] Wa(e). (19)
For example, W5 (e) may be taken in the following form
Wae) = (€:D:e)7, (20)

a = 2, where D is symmetric fourth-order, positive definite tensor. For « = 1, this
energy corresponds to a linear-elastic material with elastic stiffness tensor given by D.
For varying «, it behaves more or less stiff in a nonlinear way.

According to the assumption above, the potential inside a shear band is positive homo-
geneous of first-order in the strain field (19). We will see later on, that only for this very
form of the potential as given in Equation 20 corresponding to & = 2, it has the desired
property leading to strong discontinuities. If « is smaller than 2, the material will exhibit

micro-shear band

/

/
1-¢ n M/
é. f—>0 {(4/‘
(1-6)—1

Figure 3 Shear bands are treated as laminates of first order.
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only weak discontinuities. If « is larger than 2, a relaxed energy does not exist because of
lack of coercivity.

Based upon these considerations, let us start with the consideration of a very simple
one-dimensional model to discuss the physical implications of the proposed approach.
Then it will be generalized to two dimensions.

One-dimensional problem

Micro-strain

Shear bands are treated as special laminates mixing two co-existed phases (Figure 3). The
volume fraction & characterizing the width of the micro-band may be defined by the ratio
between the length scale and a characteristic geometric parameter [30,31]. If the volume
fraction £ is finite (0 < & < 1), shear bands are represented as weak discontinuity. In this
case, let us denote by ¢ the strain present outside and by &5 the strain present within a
micro-shear band (see Figure 1a). A visualization given in Figure la depicts the shape of
a non-convex potential W and its convexification.

The volume fraction & of the micro-band varies between 0 and 1. Let us assume that the
volume fraction £ is rather small in comparison to the volume fraction of the RVE, then,
the latter case does not happen. If £ tends to zero, the micro-strain & of the high-strain
domain is unbounded. Then, a potential W responsible for a strong discontinuity (¢ — 0)
is depicted in Figurelb.

To clarify why &7 is unbounded, let us start with the relation between the macro-strain
¢ and the two micro-strains €1, &

e=1-§)e1+8¢e. (21)

Following Lambrecht and Miehe [29], we assume that
g1 =¢e—£&d, (22)
g =e+(1—-8d=¢c—&d+d, (23)

where 0 < & < 1. Let us consider here the case d > 0 and ¢ > 0. In the case d < 0 and
€ < 0, the procedure is completely similar. The case ¢ d < 0 leading to |3 < |¢| does not
exist. In order to analyze the limit £ — 0, we have to introduce an appropriately rescaled
variable. Let us define s by

s=¢&d. (24)
Substituting (24) into Equations 22 and 23 yields

g =¢6—s, (25)

82:8—s+§ (26)

s
Let & tend to zero for fixed s. Then — will grow out of bounds in comparison with (¢ — s).

Thus, Equation 26 can be simplified as

g ——> 00 as&é — 0. (27)

The assumption of a zero-width micro-shear band immediately leads to an unbounded
strain (27) within the high-strain domain of the micro-shear band.
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Relaxed energy

Based on the values of the two micro-strains €1 and &, the potential W can be divided
into three domains (see Figure 1b). The quadratic part, denoted as W7, is the potential
representing the behaviour at small strains. The linear part W is the potential represent-
ing the behaviour at very large strains. The energy W in the domain in strain space where
W(e) # Wi(e) and W(e) # W>(e) is of no importance since it does not influence the
relaxed energy. Hence, using (25) and (27), we can formulate a mixture potential of the
two energies as

W™ (e) = (1 — §)Wi(e1) + EWale2) = 1 — ) Wi(e —5) + EW) (2) . (28)

Based on the assumption (20) with the special case D = A%Z, it can be simplified as
W™X(e) = Wi(e —s) +Als|. (29)

It should be noted that the classical Hencky model of deformation [40-42] bears a strong
relation to our theory. To this end, the energy (29) can be viewed a composed of the elastic
energy Wi (¢ —s) and the dissipated energy A |s|. The displacement « and the plastic strain
s can then be determined by the following minimization problem

inf{/ Wmix(e(u)—s)dﬂ—/ u-fdQ—/ u-tdA Iu,s}, (30)
Q Q Q0

where W™MX is refered to in the literature as the elasto-plastic superpotential [43]. In
the plastic regime, the stress state lies on the yield surface, indicating that ¢ = A is in
agreement with Equation 34.

The non-convex mixture potential (29) gives rise to an ill-posed boundary value
problem making the calculation of shear bands dependent on the particularities of
the numerical discretization used. By introducing the concept of relaxation the prob-
lem can be resolved and becomes well-posed. The relaxed potential is obtained by the

minimization procedure
Wr(e) = inf {W™(e) | s}. (31)

As mentioned in section ‘Micro-strain’ we consider here the case d > 0 and ¢ > 0.
Then the relaxed potential (31) can be rewritten as follows:

Wr(e) = inf {W™X(e) | s, s > 0]. (32)

The corresponding stress is obtained by taking the derivative of the mixture potential
(28) with respect to ¢

o(e) = (1 —§)o(e1) +Eo(e2). 33)
The unique stationary point of Equation 32 can be obtained from
o(e) =0(e1) =o0(ez) =A. (34)

The slope of the relaxed potential represented by (34), i.e. at values of ¢ where it differs
from W, is constant, consequently, the relaxed tangent modulus is equal to zero. Here,
the material parameter A can be interpreted as stress level inside the shear band. The
relaxed potential W, is depicted in Figure 1b. The relaxed stress corresponding to a weak
and strong discontinuity is shown in Figure 4a,b, respectively. For the weak discontinuity,
the slope of the relaxed potential is constant for e < & < &9, thus, the relaxed stress
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-
o(e)=ol(e) ole)=ol(e)
=o(g) . =ol(g)
€, 3 €, > c € 3 > c
§d f(l—d) §—0:€,500

a. b.
Figure 4 Two micro-strains €1, €3 and the relaxed stress o. (a) A finite thickness of a micro-shear band.
(b) A zero thickness of a micro-shear band.

is constant in this strain interval [29]. For the strong discontinuity, the relaxed stress is
constant in the range ¢; < ¢ where 5 — 0o as& — 0. When the material softens towards
the critical state, it is shown in Figure 4b that the relaxed stress can be approximated as
being constant. This kind of stress-strain curve can be observed, for example, in dense
sands and over-consolidated clays [44]. Using Equations 29 and 31, we can approximate
the response as perfectly plastic as soon as strain localization occurs, and A in this case is
interpreted as the stress at the critical state.

Example 1

The proposed formulation in the previous section is applied to a linear isotropic material.
The mixture potential of the low-strain and high-strain domains obtained in Equation 28
simplifies to

; 1
W) = JE (e —5)° +Alsl. (35)
where E is the Young’s modulus and A is a material parameter. The local minimizer of
problem (32) is
A
0 fore<—.
E
s= (36)
A A
e— — fore > —.
E E

Now strains and stresses can be calculated as follows:

Fore < o We have s = 0. The relaxed potential is equal to the elastic strain energy

; 1
Wr(e) = WM¥(e) = 51582. (37)
The macroscopic strain ¢ is equal to ¢; and &3 dueto & =0
£ =g1 =& (38)

The material obeys Hooke’s law

9 Wmix
ae

o =
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A
For ¢ > 7 we obtain the micro-strains

g1 =&—8§=— ; &) — OQ. 40
1 z 2 (40)

The relaxed potential is the sum of the contributions of the low-strain domain here
denoted by [ (1 — &) W1]r and the high-strain domain denoted by [ § W3]z:

A2
Wr(e) = — + Alsl, (41)
2F ——
(a-sywile  EYR
The stress is given by
oW,
a:alzagz—R:A. (42)

ae
The relaxed potential as well as the stress is depicted in Figure 5.

Two-dimensional problem
Micro-strain
In the two-dimensional problem, the micro-strains €; and &, can be written as
e1 =¢— §@®n)’, (43)
er=e+(1—-8)a®n’=¢—E@xn’+ (a®n’, (44)
wheree; — ey = (@a®n)’ = %(a ®n+ nQ a) satisfies rank (¢; — €3) < 1 in Equation 18.
Let us define s by

Ea = sm, (45)

where ||m| = 1. Herein m and n are two unit vectors giving the direction of shear band
evolution; s is an appropriately rescaled variable.
On inserting Equation 45 into Equations 43 and 44, we have

€1 = & —s(m@n)s, (46)
&) =¢e—sm@n)s + g(m Q n)s. (47)

s
As & tends to zero, 3 will grow out of bounds. Thus, Equation 47 can be simplified as

£y A é(m ® n)*. (48)

Energy

_______

[1-9w,],

'

SR —————— ]

L
)

AE A

Figure 5 Relaxed potential and stress in the one-dimensional problem.
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Relaxed potential
The mixture potential of the two domains can be written in the following form

WMX(e) = Wi(e — s(m @ n)®) + |s| Wa((m @ n)®). (49)

As explained in section ‘Relaxed energy’, the relaxed potential is computed in order to
ensure the well-posedness of the boundary-value problem, governing the emergence of a
shear band. The relaxed potential is obtained by the minimization procedure

Wg(e) = inf (W™ () | s, m,n; |ml| = |nl| =1}, (50)

Let us consider two specific potentials representing the behaviour at low and high
strains, respectively

Wi(e) = %E:C:e, (51)
Woy) = h(y:D:y)?, (52)

where C and D are symmetric fourth-order, positive definite tensors. Here, & and y are
the strains in the low-strain and high-strain domains, respectively, whose domains are
depicted in Figure 3. The energy W»(y) is expected to be homogeneous of first order in y,
as shown in Figure 1b for the one-dimensional problem. Therefore, W5 (y) raised by the
exponent of % has the desired property leading to strong discontinuities. For convenience,
h=1JN /mm is introduced as a parameter to guarantee that W5 (p) has the dimension
of energy density.
Substituting (51) and (52) into (49), one gets

: 1 1
WmX(e) = i(s—sy):C:(e—sy)+|s|h(y:’D:y)f

1 1
Ee:C:€+§s2y:C:y—se:C:y+|s|h(y:’D:y)% (53)

where y = (m ® n)®. Let us denote by Wlmix and W{“i"

. 1 1
W{mx:§€:C:€+§szy:0:y—se‘:c:y, (54)
W = |slh(y : D : )t (55)

then, the mixture energy W™ is the sum of W/™X and Wi,

Using the results in Table 1, minimization of (53) with respect to s yields

1
i :C: :C: :D: 2
_ sign(e : C 1’) |: le:C )’|1 _h<J’ — )’) :| , (56)
(y:C:y)z [(y:C:p)2 y:t:y N
and the potential (49) with s given by (56) takes the form
1 1 c Dip\I T
. :C: : : 2
inf WmIX(e)zze:c:e—z[M—h(w) } : (57)
S icipt \r:Ciy/

Herein a = %y :C:y,b=—¢e:C:y,c=h(y:D: y)%. Easily one can recognise that
a is positive due to the positive definiteness of the fourth-order tensor C.
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Table 1 Minimization problem: inf; W (s)

Expression

Scalar minimization problem Irswf W(s)
Potential W(s) = as’> + bs+cls| (c>0,a>0)

) ) 1 2
Solution \Qf W(s) = _@(lbl - 04

1
Minimizer s= —%(lbl — )4 sign(b)
0 for |b] <c¢

Abbreviations (bl =0+ = or 1ol =

|b] —c for |b] > ¢

sign(b) = % forb #0

Computation of stress and the tangent operator
The stress and the tangent operator are derived from the direct derivative of the relaxed
potential (50). The derivative of (50) reads

aWe  gwmix N gWwmix gg  JWMIX gy JWMIX 5y,

(58)

de e as 83+ om ﬁ—’_ on de
It is observed that the three last terms in Equation 58 vanish due to the stationarity con-
dition of the minimization problem (50). Thus, the relaxed stress which is an appropriate
average of the two micro-stresses has the form
o Wymix

o= P (59)

Considering the form of the potential (57), we obtain
0=C:e—5sC:y. (60)

The tangent operator is given by

_ 2 Whp _ 00

- %9 aC:y).
de2 de

de 61

9
—C-C:p® =
oe

Localization criterion

In the derivations above, a central role is played by the quantity

L=|:|€:C:y|1_h(y:’D:y>2i|. 62)
(y:C:p)2 v:C:y

As the process of deformation progresses, L may be negative, zero or positive. A pos-
itive value in turn signals the onset of localization, a criterion that can be shown to be
equivalent to the well-known notion of loss of ellipticity:

i. L < 0:we have s = 0. The relaxed potential Wr(e) reduces to the elastic strain
energy Wi (e).

ii. L > 0:we have s # 0. A shear band starts to develop. The homogeneous deformation
& decomposes into the two micro-strains €1 and 3. The nonconvex potential energy
W™MiX is replaced with the approximated rank-one convexification Wx(e) to ensure
well-posedness of the problem.
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Application of relaxation theory to linear isotropic material
Relaxed potential
Let us consider the potential W5 of the high-strain domain in Equation 52

Wa(y) =h(y : D : p)2.

In what follows, the case D being equal to C is investigated.
On inserting D = C into (63) and (53), we obtain the mixture potential

: 1 1
Wm”‘(e)=53:C:e+§s2y:C:y—se:C:y—Hslh(y:C:y)%

A 1
:E(trs)2+p||e||2+§szy:c:y—se:c:y

+islh(y:C:ip)?,

where y = (m ® n)®. Herein, C is the fourth-order isotropic elastic tensor

Ciir = 188k +  (8wdj1 + 8udjic) »
or in the tensor notation

C=MQI+p(Z+1I),

where A and p are Lamé constants. The relaxed potential can be defined in the form

Wi(e) = inf (W™ (&) | s, m,n; |m| = || =1}.
Using the result of Equation 57 we obtain
: mix _ & 2 2 } 2
1rslf W (e) = 2(tre) + ulell 5 (L]3,

where the quantity L in (62) reduces to

L=|: Ie‘:C:yI1 —h:|.
(r:C:y)2

(63)

(64)

(65)

(66)

(67)

(68)

(69)

Let ¢ be the angle between two vectors m and n as depicted in Figure 6, where the unit

vector ¢ is perpendicular to the vector m. Then, we may write

n = mcosq +tsing,

m.en = (m.e m)cos o + (m.et)sing.

(70)
(71)

Now we consider a plane which has (m, £) as the unit tangent and normal vectors. It

is recognized that (m.e m) is the normal strain whose direction is perpendicular to the

plane and (m.e t) is the shear strain in this plane. Using Mohr’s circle we can transform

(71) into principal strains

m.en = (&, + Rcos2yr) cose + Rsin 2y sing
= &y cos@ + Rcos(p — 2v¢),

where R and ¢, respectively, are the maximum shear strain and the average strain

1 1
R= E(El —E) ;5 em= 5(51 + E).

(72)

(73)

Herein, v is an angle between the vector m and the eigenvector e; corresponding to the

major principal strain E; as denoted in Figure 7.
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Figure 6 Orientation of the shear band.

Instead of minimizing (67) with respect to s, m and n, now we minimize (74) with

respect to s, ¥ and ¢ based on Equations 70 to 73

WR(e):inf{Wmix(e) |s,1ﬂ,<p;0§w,<p§n}. (74)
The minimization of (74) with respect to s, ¥ and ¢ yields
® R=0:
v =¢=0, (75)
sign | Atre + 2pe
,_ sien| ”’”]L+, (76)
Atre + 2pe
where L = ﬂ - (77)
[20+2]2
5:mt
A

Figure 7 Mohr strain circle.

(€mm ) 5mt )
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e R£0:
COSQ = 26mi + Mre (78)
YT R+
=12 (79)
i At 2 2
, _ sign [(rtre + 2uem) cos<p—£— HR] ., (80)
[+ (o + ) cos? g2
2 2
where L = \/4“R @+ H);‘_:legm + Mre) —h (81)
u

The capability of the proposed model is demonstrated through numerical simulation of
a tension test in the next section.

Example 2

In this section, the model presented in section ‘Relaxed potential’ are implemented into
the finite element code FEAP [45]. In what follows, we investigate a tension test under
plane strain conditions. The main goal of the study is the analysis of the developing shear
bands and the demonstration of mesh independent results due to the proposed relaxation
technique. Two kinds of elements are used in this example as summarized in Figure 8.

A sample is subjected to a prescribed vertical displacement under plane strain con-
ditions. The geometry of the specimen, the boundary conditions and the material
parameters are given in Figure 9. # = 1+/N/mm. In order to trigger the shear band
formation, a geometrical imperfection along the height of specimen is introduced.

Four discretizations of the domain are considered: 3 x 8, 7 x 18, 14 x 36, 21 x 54
elements. The response obtained using the four different meshes is the same with respect
to load-displacement curves as shown in Figure 10a, thus verifying the lack of pathological
mesh-dependence of the proposed concept. As soon as the onset of localization is met
at v &~ 0.2427 mm which signals the loss of convexity, the performance of the diverse
element formulations employed starts to differ.

The displacement method is unable to capture the localization and shows a hardening
behaviour as depicted in Figure 10a,b.

However, Figure 11 demonstrates that the mixture element formulation can resolve the
effect of strain localization. While in Figure 11a,b, the mesh is still too coarse to exhibit
shear bands, these are clearly represented in a mesh-independent way in Figure 11c,d.
There exist two symmetric shear bands in this example and their orientations are about
60° and 120° with respect to the horizontal axis.

The behaviour of the relaxed potential as well as the relaxed vertical stress oy, of the ele-
ment 465 (Figure 11e) is shown in Figure 12 at the first Gauss point inside the shear band.
After the bifurcation point, the relaxed potential of the low-strain domain approaches
asymptotically a constant value, whereas the relaxed potential of the high-strain domain

Element type Method Number of Gauss points Notation
1 MES' 2x2 MES
Disp? 2x2 Q4

Figure 8 Notation of element type. MES', the mixed enhanced strain method [46]; Disp?, the displacement
method [47].
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v
A A 4 A

§t % E = 1000 N/mm?*

E B v =0.25

%Dlm?
Lsmm |

Figure 9 Example 2: geometry and boundary conditions.

8 mm

is active inside the shear band only and increases continuously with the prescribed
displacement v. As a result, the relaxed stress approaches a constant value.

Application of relaxation theory to inelastic materials

Relaxed potential

For simplicity we consider the special case D = A%Z [36] in this section with assum-

ing orthogonality, i.e. m.n = 0 of the two unit vectors giving the direction of shear

band evolution. Herein, A is a material parameter and Z is the fourth-order unity tensor.

Furthermore, we assume that evolution of these two vectors over time is not remarkable.
We assume that the elastic deformation is small compared to the inelastic deformation

and can be neglected, yielding Equation 5:

e1 = Vu. (82)
Together with the above assumptions, the mixture dissipation potential can be obtained

with s replaced by § and W™ () by A™X(&y) in Equation 53

. 1 A
A™ (&) = 3 (é1—5y):C:(e1—5py) + 7 151 (83)

7

1201

100 e

5.38E+00
5.15E+00
80/ T 4.92E+00

4.69E+00
24, 126, 504, 1134 elem

g 4.45E+00

sor i 4.22E400

i 3.99E+00

40 T 3.76E+00

it 3.53E+00

3.30E+00

3.06E+00

2.83E+00

2.60E+00

Top vertical reaction (N)

20

0 0.2 0.4 06 08 1
Vertical displacement (mm) Relaxed potential (Nmm/mm?)

a. b.

Figure 10 Localization in tension using MES elements (mixed enhanced strain method) and Q4
elements (displacement method). (a) Load-displacement response. (b) Distribution of relaxed potential.
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Relaxed potential (Nmm/mm3)
1.15E+01 2.03E+01 3.55E+01
1.06E+01 1.87E+01 3.25E+01
9.63E+00 1.70E+01 2.96E+01
8.72E+00 1.53E+01 2.67E+01
7.80E+00 1.37E+01 2.38E+01
6.88E+00 1.20E+01 2.08E+01
5.96E+00 1.04E+01 1.79E+01
5.04E+00 8.71E+00 1.50E+01
4.12E+00 7.05E+00 1.21E+01
3.20E+00 5.39E+00 9.16E+00
2.28E+00 3.73E+00 6.24E+00
1.37E+00 2.08E+00 3.32E+00
4.47E-01 4.18E-01 3.93E-01
b. C.
4.71E+01
4.32E+01
3.93E+01
3.54E+01
3.15E+01 Zoom n n
2.76E+01 - 5
2.37E+01
1.98E+01 60° 60°
1.59E+01 Y
1.21E401 Element 465 Element 481
8.16E+00
4.27E+00
3.77E-01
d. e.

Figure 11 Example 2: comparison of different finite element meshes. Distribution of relaxed potential at

v = 1.0mm. (a) 24 MES elements. (b) 126 MES elements. (c) 504 MES elements. (d) 1,134 MES elements. (e)

Orientation of shear bands at element 465 and element 481.

where y = (m ® n)°. Let us denote by A‘l"ix and Arznix
i 1. . .
AT = 3 (1 —38py):C: (e1—$y), (84)
. A
AP = — 3], (85)
2 V2

then, the mixture dissipation potential A™X is the sum of A‘lmx and Ag‘ix.

Element 465 35 Element 465
25
30
20
En 25
S <
£ §
E £
5’ >
> © 15
o 10
2
w 10
5
5

0 0.1 02 03 04 05 06 0.7 0.8

€
y

Figure 12 Example 2: relaxed potential and relaxed normal stress o, at the first Gauss point of the
element 465.
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tttft p (N/mm)
A

&
Il

1000 N/mm? 40.725 = - -
B v =0.25 )
— A =30 N/mm*

8 mm

-

‘ 3 mm r 2.715 5.43 time (s)
Figure 13 Example 3: geometry and boundary conditions.
By substituting (66) into (83), the relaxed potential reads
) A a2
Wi = inf A" = Ztr 6+l = 2u[leml - 5] (86)
smn 2 214
A . . .
where ¢ = ——, |, is the maximum shear strain rate.
V2u
Solution $ yields
. . . 0 if |&m| < /2
§ = (2 |&mul — a)4sign(é = 87
(@ em| = ) ysign(Em) { @ el — ) SignGem) Kol 202

Unlike elastic materials, inelastic materials can be incorporated as well via a time-

incremental formulation
Went1 = Wru + AWR (88)

where Wpr ,4+1 and Wpg ,, respectively, are the potential energies at times ¢,,+1 and ¢,, AW
is the incremental potential at time interval At

tyt1
AWp = Whr dt. (89)

tn
The proposed formulation is implemented in the general code FEAP [45]. Based on the
mixed enhanced strain method [46], the four-node quadrilateral element (MES element)
will be considered in the next section.

- 828 elem
112146 elem
120~ --2310 elem| |
2480 elem
g 100+~ B
w
8
.§ 80 ‘ b
©
2
T 60 =
>
40 5
4
20/ :
0 i | | tc b
0 0.1 0.2 0.3 0.4 0.5 0.6

Average vertical displacement (mm)

Figure 14 Example 3: load-displacement response.
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DISPLACEMENT 1 STRESS 7
0.00E+00 3.89E+00
-7.84E-03 3.63E+00
-1.57E-02 3.37E+00
-2.35E-02 3.11E+00
-3.13E-02 2.85E+00
-3.92E-02 2.59E+00
-4.70E-02 2.32E+00
-5.48E-02 2.06E+00
-6.27E-02 Element 1.80E+00
-7.05E-02 o056 1.54E+00
-7.84E-02 \ 1.28E+00
-8.62E-02 1.02E+00

7.57E-01

-9.40E-02

Time = 5.43E+00 Time = 5.43E+00

a. b.

Figure 15 Example 3: distributions of horizontal displacement and of relaxed energy at ¢t = 5.43 s
(2,480 MES elements). (a) Horizontal displacement (mm). (b) Relaxed potential (Nmm/mm?3).

Example 3

A sample is subjected to vertical loading and unloading under plane strain conditions
as shown in Figure 13. A geometrical imperfection along the height of specimen is
introduced to trigger the shear band formation.

Four discretizations of the domain are considered: 828, 2,146, 2,310 and 2,480 elements.
As depicted in Figure 14, mesh-independence response obtained by use of MES element
becomes evident by considering load-displacement diagram at the top of the specimen.
The distributions of the horizontal displacement and of the relaxed energy shown in
Figure 15 point out the localized region. The relaxed energy and the relaxed vertical
stress of the element 956 at the first Gauss point are shown in Figure 16. The relaxed
potential of the large-strain domain (Ag‘ix)R develops linearly between &, = 0.035 and
gy = 0.095 (2.7s < t < 2.73s), then remains constant when ¢, > 0.095 corresponding

Element 956
Element 956 50,

La

Energy (Nmm/mm®)

. 0 . . . .
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
€

g v

Figure 16 Example 3: relaxed potential and relaxed normal stress o, at first Gauss point of element
956.
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to the unloading path. The relaxed stress is also constant for 0.035 < &, < 0.095, and it
diminishes after &, > 0.095 due to the prescribed unloading.

Conclusions

The paper focuses on a theoretical framework for the treatment of shear localization in
solid materials. The theory is based on minimization principles associated with micro-
structure developments under the assumptions of a micro-shear band of a zero thickness
and the presence of a mixture potential inside the shear band.

Localization phenomena are regarded as micro-structure developments associated with
nonconvex potentials. The nonconvexity of the mixture potential occurring due to the
formation of strain localization is resolved by relaxation in order to ensure the well-
posedness of the associated boundary value problem. The relaxed potential, which is
approximated by a first-order rank-one convexification, is obtained via local minimiza-
tion problem of the mixture potential. The onset of localization is detected through the
proposed optimization process. The model can be applied to any material which softens
towards the critical state. The relaxed stress can be computed directly and approaches
the critical stress as soon as strain localization occurs. Material points located inside the
shear bands can be considered as decomposed into a low strain and a high strain phase
at the microscopic level. The theoretical solutions satisfy possessing a zero micro-band
width at the microscopic level. At the macroscopic scale, the width of a shear band is still
finite. Numerical results clearly show a mesh-independent behaviour in the sense that
shear bands are as narrow as the mesh resolution allows, while all other features of the
solution are independent of the chosen discretization.
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