Duong et al. Asia Pac. J. Comput. Engin. (2015) 2:3 H :
DOI 10.1186/540540-015-0015-x O Asia PaCIﬁ_C Journal _On .
Computational Engineering

a SpringerOpen Journal

RESEARCH Open Access
@ CrossMark

Physical response of hyperelastic models
for composite materials and soft tissues

Minh Tuan Duong'?, Nhu Huynh Nguyen'= and Manfred Staat'”

*Correspondence:

m.staat@fh-aachen.de Abstract

' Aachen University A hyperelastic model must not only characterize the mechanical response of a com-
orAppled cences ite material such as soft tissue, but al ical stability by a feasible set
Heinrich-MuBmann.Str. 1. posite material such as soft tissue, but also ensure numerical stability by a feasible se
52428 Jilich, Germany of material parameters. Apart from the well-known ill-conditioning problem caused by
Full list of author information the incompressibility constraint, the paper indicates another ill-conditioning occur-

is available at the end of the

article ring in any general fibre-reinforced material model for tubular organs when unbalance

between the fibre strain energy and the matrix strain energy becomes too large. Spe-
cifically, although the Holzapfel model is polyconvex, this problem can be observed as
an unphysical behaviour in a physiological deformation range of a tissue such as arte-
rial wall and intestine by thickening in the thickness direction associated with a volume
growth of a specimen in a tension test. Particularly, the same problem for a polyconvex
modified Fung-type model with the matrix characterized by the neo-Hookean model
has been discussed for the first time. By investigating the influence of the shear modu-
lus in these two models, we not only prove the cause of the ill-conditioning but also
propose a solution to control the unbalance in the strain energy. The numerical results
show significant enhancement of the model stability in overcoming the unphysical
deformation.
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Background

Composite materials such as biological soft tissues can be modelled using a phenom-
enological approach such as an exponential function by Fung et al. [1] and later fully
completed in a more general form by Humphrey [2]. This classical Fung-type model has
been widely used in biomechanics such as rabbit skin (Tong and Fung [3]), rabbit arter-
ies (Chuong and Fung [4]) and a right coronary artery (Takamizawa [5]). On the con-
trary, a micro/structural approach models the microstructural constituents of tissues
such as modelling fibres of connective tissue as long sinusoidal beams by Comninou and
Yannas [6] and flat collagenous fibres (Lanir [7]). Particularly, Holzapfel et al. [8] postu-
lated a strain—energy function (called the Holzapfel model) for arteries based on micro-
structures of the tissues by considering each layer of the artery as a composite material
whose non-collagenous tissues, e.g. elastin, are considered as isotropic matrix substance.
The collagen, which is assumed to be composed of two families of collagenous fibres,
plays the role of a reinforcing material, and is assumed to be perfectly embedded in the
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isotropic matrix. The fibres and the matrix are characterized by different strain—energy
functions and the material coefficients have clear physical meaning.

Besides the capability of representing the material behaviour of biological soft tissue
accurately, constitutive equations must also ensure numerical stability in computer sim-
ulation by satisfying the Legendre—Hadamard or the ellipticity condition equivalent to a
convexity or polyconvexity condition (Marsden et al. [9]).

Although the Holzapfel model is polyconvex (Schroder et al. [10]), a numerical instabil-
ity known as unphysical behaviour can occur for an improper set of material coefficients
as described in tension tests by Gasser et al. [11]. Considering the tests, the structural
arrangement of the stiffened fibres in combination with the soft ground matrix activates
a load-carrying mechanism in which the collagen fibres need to rotate towards the load-
ing direction until they are able to carry significant load. Consequently, there is an unre-
alistic thickening of the sample strip in tension tests and it violates the incompressibility
condition with a volume growth. To prevent this non-physical behaviour, Gasser et al.
[11] took into account an effect of the dispersion of the collagen fibres whose orienta-
tions are not uniform. Admittedly, this proposal helps the model come closer to the real
behaviour. In fact, by investigating terms of the strain—energy function, it is obvious that
the incorporated dispersion is able to control the non-physical thickening by decreasing
the difference between the orthotropic energy and the isotropic energy.

A set of material constants, which is identified by curve fitting and satisfies the good-
ness of fit, is not unique in general. For example, by fixing the shear modulus, Helfen-
stein et al. [12] identified two sets of material constants of the Holzapfel model with and
without a volumetric—isochoric split. This split was also known as another source of the
non-physical response (Ehlers and Eipper [13]). Shear moduli differing by a factor of 10
can be observed for two different arterial layers (Holzapfel et al. [8]). Obviously, a too
soft ground matrix characterized by the small shear modulus of the neo-Hookean model
may cause the constitutive matrix of the overall model to be ill-conditioned because the
entries of this matrix are summations of both the small stiffness of the ground matrix
and the large stiffness of the fibres, leading to a high condition number. Thus, this com-
posite material model shows strongly directional behaviour and would behave non-
physically in a direction along which the strain—energy dissipation is minimal, e.g. in
directions orthogonal to the fibre orientations (Duong et al. [14]). In tubular organs this
is observed in the radial direction.

In this paper, we show that the above thickening effect is concerned with the ill-con-
ditioning problem and no recourse to the “fibre rotation’, as given by Gasser et al. [11],
is needed. Observations of the ill-conditioning for nonlinear elastic models for certain
classes of soft biological tissue have been mentioned earlier, see, e.g. Sun and Sacks [15].
Besides, the formulation of biological models is not similar, and hence mechanisms
causing the ill-conditioning of each model are different. Herein, we would prove that
the unrealistic phenomenon of the Holzapfel model is resulting from the ill-conditioned
constitutive matrix caused by large differences of the magnitudes of the shear terms
in the elasticity tensor. Moreover, the modified Fung-type model, abbreviated as MFH
model (Holzapfel [16]), has been proven to be affected by this ill-conditioning prob-
lem in the physiological deformation range for the first time (Duong [17]). However,
no indication for relation between this numerical instability and the mentioned “fibre
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rotation” or the source of the thickening effect has been provided in literature [11-13].
In addition, no suggestion for treating the ill-conditioning issue as well as for obtain-
ing a lower condition number has been proposed because solving the condition number
equation through matrix manipulation leads to a very complicated formulation. Thus, in
this paper the numerical condition number of the elasticity tensor (hereafter it is shortly
named the condition number), whose value changes as a function of material parameters
and deformation, is also investigated. Numerical results show the significant influence
of the shear moduli in the two considered models on the unphysical behaviour. Conse-
quently, this suggests how to treat the unphysical mechanical response of the material
law by controlling the unbalance of the energy with the highest possible shear modulus,
leading to significant improvements in the numerical results.

Constitutive Equations

Models for soft biological tissues

For the sake of comparison and investigation of the ill-conditioning, in this section two
well-known material models as well as their modifications are recalled; the Fung model
[1] and the Holzapfel model [8].

General Fung model
The strain—energy function of the classical Fung model is

We(E,]) = Clexp(c1E} + coE5 + c3E5 + 2c4E1Ep + 2¢5EoE3 4 2¢6E3E1) — 114+ 2U(J) (1)

where C,¢; (i = 1,...,6) are material parameters. C has the dimension of a modulus; all
¢; are dimensionless. E1 3 3 are the principal Green—Lagrange strains, the volumetric part
ugy = %p(] —1); J = det F where F is the deformation gradient, for incompressible
materials / = 1. In the finite element analysis p plays the role of a penalty factor which

is typically expressed by the bulk modulus k = 32((113’3) W, with ¢ equivalent to the small

strain shear modulus and v = 0.5 expresses the incompressibility similarly to the small
strain limit.

Holzapfel model

The Fung model does not need any knowledge about the fibre orientation in the tissue.
In contrast, in the Holzapfel model the isotropic part Wi, presents the non-collagenous
tissues, and the anisotropic part Wap; describes the collagen fibres under an angle o typi-
cally with respect to the hoop direction of a hollow organ, see Fig. 1:

Wh(1, 14, 16,]) = Wiso1) + Wanila, Ie) + U () ()
The isotropic term is the neo-Hookean model Wis, (1) = %(11 — 3) and the anisotropic
term is
/q]-[ 2 le 2
Wani (s, To) = 5 {explkans (s = 1?1 = 1} + S {explian s = D = 1} 3)
2kap 2kon

with k1 a material parameter, having the dimension of a modulus, ko a dimension-
less material parameter; invariants of the right Cauchy—Green tensor C:I; = trC,
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Fig. 1 Fibre structure of organs. a Human ureter and a strip for tension tests (Dorrell et al. [34]). b Small
intestine (Gabella [35])

Iy = agy - Cag, Is = go - Cgo, ap and g unit direction vectors of the two fibre families:
ay = [0 cosa sina]T, go =1[0cosa —sino]T.

Some modified material laws
If the Fung potential is utilized to characterize the fibres in 3D cases, it can be formu-
lated by combining with an isotropic model like the neo-Hookean model [18, 19].

Waar(EJ) = 5 (I = 3) + We(E.)). @

In addition, an isotropic Fung-type potential considered by Nguyen et al. [20] and Duong
et al. [21] is formulated as

Wate(E.J) = £ (11 = 3) + Clexp(Quo(B)} — 11, 5)
where Qiso (E) = c1(E? + E3 + E2) + 2c2(E1Ey + E2E5 + E3Ey).

If the parameters of a 2D Fung potential are chosen to represent fibres in a fibre plane,
then the material law in (4) becomes the MFH (Holzapfel [16]) written as

WnmeH(E, ) = Waniso = Wiso 1) + 2U(J), (6)
Waniso = Clexp{Qfipre (E)} — 1]; Wiso(l1) = (1 — 3), (7)
Qfibre(E) = c1E5 + 2E3 + c3E>E3, (8)

where c¢;, ¢, and c; are dimensionless parameters so that the angle between two fibre
2c3

c1—cy’

nent Waniso contributes mechanical properties only in the fibre plane 023 as an expo-

families along the hoop direction is defined by tan(2e) =

see Fig. 1. The compo-

nential function, whereas Wis,(I1) = (I — 3) characterizes the material response in all
directions as a polynomial term. This would lead to the same ill-conditioning problem as
described above. Considering a human ureter or a small intestine, see Fig. 1, the micro-
structure of these tubular organs may include layers of both one fibre and two fibre fami-
lies. For this application, a slight modification of the Holzapfel model by Nguyen et al.

Page 4 of 18
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[22] can be used. In general, the mechanical properties of the two fibre families might be
different (ko # k3p), and the orthotropic part (3) could be slightly modified as

k k
Wani(la,Is) = - {explikay (s — D) — 1) + %{exp[kspae 1?2 -1) ©)

where k1, has the dimension of a modulus, k, and k3, are dimensionless;
The orthotropic part (9) can re-use the material parameters of the original Holzapfel
orthotropic part (3) in the published literature using the relations:

kip = ki /koms kop = kon, k3p = kon (10)
When modelling a structure of only one fibre family, the second family in the model (9)
is deactivated simply by imposing k3, = 0.

Gasser et al. [11] proposed another modified Holzapfel model (called the Holzapfel—
Gasser model) obtained by reformulating the orthotropic terms (3) as

kiH
2kop

Wani(I1, I, Ig) = )
i=4,6

lexpikanilkgy + (1 — 3ke); — 117} — 1] (a1

This model has incorporated a so-called fibre dispersion factor kg = [0, 1/3]. For kg = 0,
the energy function (11) becomes the orthotropic part (3) of the original Holzapfel
model. For kg = 1/3, the energy function (11) represents an isotropic material.

Non-physical behaviour
To obtain the unique solution of a boundary-value problem, the strain—energy function
is required to satisfy the quasi-convexity condition. Ball [23] proposed a polyconvexity
concept implying quasi-convexity and strong ellipticity. This guarantees material stabil-
ity. For isotropic materials, the neo-Hookean model satisfies the concept of polyconvex-
ity (Schroder and Neff [25]). Similarly, the Holzapfel model is also a polyconvex function
with positive material parameters (Schroder and Neff [25]). In addition, the MFH model
is also polyconvex (Balzani [24]). However, polyconvexity is not sufficient to ensure
physical responses of the Holzapfel model and of the MFH as described in the following.
The Holzapfel model and the MFH model both suffer from the ill-conditioning prob-
lem even in the physiological deformation range of tissues with improper sets of mate-
rial constants. This leads to a volume growth and hence the incompressibility constraint
is violated. The unrealistic response of the orthotropic model and the transversely iso-
tropic model in uniaxial tension tests are depicted in Fig. 2. A volumetric—isochoric split
decomposes the strain energy into a volumetric part and a deviatoric term and might
cause the non-physical behaviour of materials not restricted to (near) incompress-
ibility (Ehlers and Eipper [13]). An alternative solution was also suggested by Sansour
[26] and afterwards realized by Helfenstein et al. [12], in which they have adopted the
original invariants of the right Cauchy—Green tensor for fibres, whereas the incom-
pressibility was imposed on the isotropic strain energy. They also stated that the aug-
mented Lagrange method is an alternative approach. However, we demonstrate that the
augmented Lagrange method can just mitigate the ill-conditioning problem. Therefore,



Duong et al. Asia Pac. J. Comput. Engin. (2015) 2:3 Page 6 of 18

Initial thickness Initial thickness

s\ DISPLACEMENT 1 DISELACEMENTA
——
BT I~ -1.14E+00 -1.85E+00
=Esss§§~ -9.47E-01 1.54E+00
-.==NN\~I’ _7.57E-01 1.23E400
=-.~==§§’I" -9.24E-01
.=~~~~’l” -5.68E-01 g
===~§§§§,’,”t -3.79E-01 -6.16E-01
E‘~==N§\,’t,’t 1.89E-01 N | -3.08E-01
=g===§§§'t’i 7 3.33E-16 \ss 1.11E-15
‘g%%g###@f;’ 1.89E-01 SNS 3.08E-01
RN 3.79E-01 NSNS 6.16E-01
ey §§§§ 7 §\ 4

SEg NS 5.68E-01 §$§ 9.24E-01
r ﬁg&%%ﬁ?iﬁ‘ { 7.57E-01 §§$§ 1.23E+00
N { 9.47E-01 §§\‘§ 1.54E+00
wﬁ’i;’? 1.14E400 $$§‘5 1.85E+00

5”” Min = -1.04E+00 J §§$§; Min =-1.85E+00

ag’ﬁ’ ) o Max = 1.14E+00 §§.\g§ Max = 1.85E+00

V £ Time = 1.00E+00 \ﬁé Time = 1.00E+00

Thickness thickening \ Thickness thickening
a With two fibre families b With one fibre family

Fig. 2 Non-physical responses of the Holzapfel model (the directions r, 6 and z are denoted 1,2 and 3,
respectively)

the paper presents a different source of the ill-conditioning through several tension tests
employing the Holzapfel and the MFH.

Holzapfel model with two fibre families and one fibre family

We perform uniaxial tension tests on a rectangular adventitial strip exhibiting two fibre
families, see Fig. 1. Gasser et al. [11]) used the Holzapfel model to conduct these tests
showing the thickening by employing pseudo-material constants, which are thus unable
to describe the mechanics of the adventitial strip. In contrast, for our numerical tests, we
utilized the set of material constants obtained from curve fitting to experimental data.
Therefore, the model using these material coefficients characterizes the mechanics of the
adventitia. In addition, the tests were carried out in the physiological deformation range
of the adventitial specimen, but more importantly, the ill-conditioning was persistently
observed. To this end, the material parameters of the Holzapfel model for the case of two
fibre families (Fig. 2a) were identified by curve fitting for two uniaxial tensile tests along
the axial and hoop directions of an arterial wall (see Fig. 3) in which the data of an arte-
rial wall were reproduced from Holzapfel et al. [27]); u = 22.722 (kPa), kzp = 94.3205
(kPa), kpp = 240.5662, o = 49.3552°. Moreover, the parameters for a transversely iso-
tropic model are identical to those in the case of two fibre families, except for the fibre
angle, see Fig. 2b.

The simulation of a half of the specimen in Fig. 2 with Poisson’s ratio v = 0.49996
shows clearly the thickening of the strip at the middle, and this effect becomes more
severe if the load continuously increases. Specifically, the thickness in Or direction
(01, displacement 1) orthogonal to the fibre plane O6z (023) for the two fibre fami-
lies increases which is inconsistent with the physically expected transverse contraction.
Interestingly, for the case of one fibre family, the thickness increases in all directions in
a plane orthogonal to the fibre direction O3, see Fig. 2. Although this set of material
parameters ensures the polyconvexity of the Holzapfel model, the numerical results are,
however, incorrect. The MFH model is subjected to this problem in the same manner.
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Fig. 3 Curves fitted to experimental data of an adventitial layer (Holzapfel et al. [27]) using the Holzapfel and
the MFH models

lll-conditioning and condition number of constitutive matrix
Considering the C, the ill-conditioning is due to the large condition number of the con-
stitutive matrix. Since the elasticity tensor is symmetric and positive definite, its 2-norm

condition is defined as

_ /max(C)

B ’lmin © (12)

where Amax(C) and Apin (C) are the maximal and minimal eigenvalues of C, respec-
tively. A large condition number x >> 1indicates an ill-conditioned matrix and low accu-
racy of the results of matrix manipulations. Thus, the larger the condition number is, the
worse the solution of the equation system becomes. In general, it can be simply said that
the numerical solution of the linear equation system might lose about k decimal digits
of precision when its condition number is k = 10% (Liu and Chang [28]). In addition, if
the solution is obtained from an iterative process, then its numerical error is iteratively
accumulated. Iterative numerical analyses of biological soft tissues based on nonlinear
materials subjected to large deformations severely suffer from such cumulated errors.
An additional important issue to be discussed is the condition number of the elasticity
tensor. Since the Holzapfel model is an additive function of a linear polynomial isotropic
term and an exponential anisotropic part, the unbalance between the two components
increases exponentially with increase of deformation. When the unbalance attains some
bound, the ill-conditioning of the elasticity tensor C may become effective. As it was
shown by Sun and Sacks [15], even if the material model is built up from convex func-
tions, the resulting model may be subjected to the ill-conditioning, which in the case of
the Holzapfel model accrues from magnitude differences amongst components of the
elasticity tensor as shown below. In such a case, the numerical analysis is unable to give
an accurate solution. Thus, the elasticity tensor must be well-conditioned, apart from the
convexity or the polyconvexity condition. The physical behaviour in relation to the ill-

conditioning is illustrated and analysed in the following sections.
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Results

Numerical tests: physical behaviour of submucosa layer

In this section, we indicate the relation between the ill-conditioning and the non-
physical behaviour of the Holzapfel model and the MFH model. Obviously, for a 3D
boundary-value problem, it is impossible to compute analytically the condition number
because of complicated matrix manipulations. Therefore, the condition number is calcu-

lated numerically for our tension tests.

Equibiaxial test of submucosa

Material parameters of the Holzapfel model are obtained by curve fitting to the intestinal
experimental data which were reproduced from Ciarletta et al. [29]. Biaxial deformation
is prescribed by imposing two in-plane stretches in the interval 1.0-1.3: the longitudi-
nal stretch 4, and the hoop stretch Jg (by the incompressibility constraint 4, = 1/(4g, 1)
through the specimen thickness). Then, the Cauchy stresses in the longitudinal, hoop
and radial directions are functions of the defined stretches. Material parameters of
the Holzapfel model were identified using a nonlinear algorithm which minimizes the

function:

1 n n
5D @E—ai+) (o — o)} (13)
i=1

i=1
where 0,0 are stresses from the experimental data of Ciarletta et al. [29], ag ,of are
stresses calculated from the Holzapfel model andi = 1,.. ., n are data points.

Furthermore, it is well known that the curve fitting may result in non-unique sets of
constants and some of these sets can produce unphysical behaviour (Sun and Sacks [15];
Schmidt [30]). Let us choose the shear modulus given by Ciarletta et al. [29] as the refer-
ence, u* = 1.58 kPa. Apart from the set of material parameters by Ciarletta et al. [29],
similar to the ones by Holzapfel et al. [8], two other material sets with the shear moduli
varying by factors of 10 and 0.1 were produced with the corresponding values of good-
ness of fit. Note that during the curve fitting, the angle of the model in Ciarletta et al.
[29] was fixed (¢ = 60°) so that the two new fitted material sets of the Holzapfel model
can characterize the mechanical properties close to those of the original material con-
stants in Ciarletta et al. [29]. Obviously, Fig. 4 shows a calibration of three material sets
for the fitted curves which are very close together in the “toe region” The stress—stretch
curves are drawn by the analytical relationships in the incompressibility condition of the
material. However, to avoid the high nonlinearity of the incompressibility constraint in
finite element analysis, we can solve the problem for nearly incompressible materials
through the penalty method imposed by the volumetric strain—energy function in which
Poisson’s ratio is set to be as close as possible to 0.5 (in literature v = 0.4996 is com-
monly used). Therefore, we need to write the material law for finite element implemen-
tation in the nearly incompressible form.

The dimension of the simulated specimen was as follows: L,LyL, = 0.2 x 25 x 25 mm?.
For the sake of symmetry, the model was simulated by only one single, mixed finite ele-
ment because there is only the volumetric locking effect in this case. A penalty method
was used to enforce the incompressibility condition of the model. To prevent the
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Fig. 4 Equibiaxial test: fitted curves with u = pu*, u = p*/10and u = 10u*

ill-conditioning of the stiffness matrix that may occur at high levels of incompressibility,
i.e. 04996 < v < 0.5, the Uzawa algorithm, an augmented Lagrangian method, was uti-
lized (Taylor [31]). The displacements d = 0.35Ly were identically prescribed in both 6
and z directions in 350 equal time steps.The predicted Cauchy stresses

or=0:>p=5r/lf, 14
oy = 59)»3 —p, 0= Sz)”% 4

will be considered as the gold standard to check the numerical behaviour of the Holzap-
fel model in which S,, Sp and S, are the principal second Piola—Kirchhoff stresses. The
structural tensors @ ® ag and go ® go define the principal orientations of the ortho-
tropic material, indicating the stiffest and the mid-compliant orientations, respectively.
Thus, the stress—stretch curves along 6 and z directions are different. In the equibiaxial
tension test, see Figs. 5, 6, for © = */10, there is a good agreement between the curve
2 and the predicted one for stretches smaller than a critical stretch A% /10 _ 195, This
is the largest stretch at which the response of the model is still sufficiently close to the
analytical stress. For larger stretches 4 > A& Y/ 10 the thickness of the simulated specimen
begins to increase and therefore the incompressibility condition is violated. In contrast,
the neo-Hookean model is immune from this thickening, see curve 5 in Fig. 5. Thus, the
unphysical deformation directly relates to the co-existence of the isotropic part and the
anisotropic term in the strain—energy function. As a consequence, the unphysical defor-
mation results in incorrect stresses; see the stress—stretch curves 3—6 in Fig. 6. How-
ever, employing a larger shear modulus x (u = p* or u = 10u™) can greatly improve the
simulations by increasing the critical stretch. Moreover, the ratio Wani/ Wiso between the
exponential function Wi and the linear polynomial function Wi, is approximately lin-
ear for small deformation, but increases exponentially at higher stretch levels, see Fig. 7.
As seen in Fig. 5, this rapid growth for i = */10 occurs at stretches larger than A% "/10
and is accordingly associated with the increase of the condition number, see Fig. 8. The
smallest shear modulus ;¢ = p*/10 leads to the smallest critical stretch compared to the
other cases, see Fig. 5.
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Fig. 5 Equibiaxial test: comparison of displacements in thickness direction of the strip of an intestinal layer
for three values of the shear modulus (u* = 1.58 kPa; v = 0.4996)
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Fig. 6 Equibiaxial test: effects of the shear modulus on stress—stretch curves; FEM results compared to
analytical ones (prediction)

Uniaxial tension test of submucosa

A uniaxial tension test in the axial direction of the submucosa layer was investi-
gated with the material parameters in Table 1. The specimen has the dimension of
LLyL, = 0.5 x 3 x 12mm3, Due to symmetry, only one-eighth of the specimen is
modelled, see Fig. 9, by 2376 hexahedral mixed elements (Taylor [31]). An axially given
displacement 0.15L, was prescribed at one end of the specimen model. For the shear
moduli © = u*/10 and u = p* the thickness of the specimen increases for the first step
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Fig. 8 Equibiaxial test: condition numbers and relative difference between condition numbers in the cases;

w*/10vs. w* w*vs. 10u* and w* /10 vs. 10u™ (u* = 1.58 kPa; v = 0.4996)

Table 1 Material parameters for the submucosa layer of large intestine (u* = 1.58 kPa)
ulu* u (kPa) k,p (kPa) kzp = k3p a(°)
1.0 1.580*% 0.9095% 12.1000% 60*
0.1 0.158 09134 12.0927 60
10.0 15.800 0.8710 12.1752 60
* Original data from Ciarletta et al. [29] but written in the formulation by Nguyen et al. [22]

of the simulation; hence, the critical stretches are very close to 1, see Fig. 9. This occurs
because the axial tension increases the stiffness of the fibres faster than in the case of
the equibiaxial tension since the fibres form a small angle (30°) with respect to the axial
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Fig. 9 Uniaxial tensile test in z direction. a Displacement in thickness direction r [mm] and b Cauchy stress
[kPa] in z (3) direction: left side u/u* = 10—without thickening; right side u/u* = 0.17—thickening (with
deformed and un-deformed shape)

axis. For = 10u*, the thickness displacement of the specimen is physically decreased
as shown in Fig. 9 since the stiffness difference between the fibres and the ground matrix
is smaller and therefore the incompressibility condition is ensured. This phenomenon
can be avoided or mitigated when the material parameters are suitably chosen. Specifi-

cally, the shear modulus should be identified as large as possible.

Unrealistic response of the MFH model with two fibre families

To obtain the material constants for the MFH model (6), a curve fitting phase was
performed on the adventitial data (Holzapfel et al. [27]), see Fig. 3. All coefficients are
checked for the convexity conditions which are derived as c3,c3,¢3 > 0, c1¢cp — c% > 0.
Specifically, the coefficients are identified as follows: p* =22.722, C = 0.185,
¢1 = 180.082, ¢y = 373.143, c3 = 245.052. Similar to the investigation of the Holzap-
fel model in equibiaxial tensile test with the three values of the shear modulus, we also
adopted p = 10p*, n = 0.1p* and u = 10p* to simulate the radial stretch in uniaxial
tensile tests as illustrated in Fig. 10b. Although the model is polyconvex, it is strongly
subjected to the ill-conditioning problem in the physiological deformation range of the
tissue as shown in Fig. 10 in the case u = p* The results show that using a higher value
of the shear modulus leads to a better numerical stability. This finding is similar to the

one in the case that the Holzapfel model is used.

Discussion

The equibiaxial tests are investigated since it is convenient to study the condition num-
ber of the elasticity tensors of a single finite element model. The stiffness of the submu-
cosa similar to that of the arterial adventitia is essentially determined by the material
parameters for collagen fibres, whereas the stiffness of the bulk matrix is characterized
by the shear modulus p. Although this stiffness is much smaller than the one of collagen
fibres, a small change of i leads to a considerable change in the simulation results. This
numerical effect is discussed with the influence of the condition number of the elasticity
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Fig. 10 a Unphysical response b Unrealistic numerical results of stretch in tension test of the MFH model for
the adventitial layer (Holzapfel et al. [27])

tensor, which is composed of the three contributing terms C = Cigo + Cani + Cyq, see
also the "Appendix". For all considered simulations a fixed value of v, say v = 0.5, was
used. Thus, the difference in the condition numbers corresponding to the three consid-
ered cases with three different values of the shear modulus is unaffected by the mag-
nitudes of the components of the volumetric part C,y. In the anisotropic part Cyy;
there are certain entries that strongly dominate the others due to the large mechani-
cal contribution by the reinforcing fibre parameters. Specifically, since all of the fibres
are so-called in-plane fibres in the plane (§ — z), the in-plane shear term Cypip, and all
normal terms are much larger than the remaining out-of-plane shear terms, e.g. Canio
and Cypi, 1z, see Fig. 11. On the contrary to the irregular entries of Cap;, the correspond-
ing magnitude difference between the in-plane shear terms and the out-of-plane shear
terms of Cis, (by the neo-Hookean model) is small, see Fig. 11, curves 5 and 6. As a
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''''' 2) 10p*, COz/Czr, Holzapfel
o 3y p*/10, Cz/Cazr, Holzapfel
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—5) 1p*, Crr/COz, neo-Hook
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>
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Ratio between components of the elasticity tensor
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e
h
T

Fig. 11 Equibiaxial test: ratio between components of the elasticity tensor. The magnitude of u strongly
affects the difference between components of the elasticity tensor of the Holzapfel model, but has no effect
on the neo-Hookean model
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consequence, the three contributing terms Ciso + Cani + C,) in the Holzapfel model
lead to the elasticity tensor C possessing highly different magnitudes of its components,
see Fig. 11. At large deformation, the in-plane shear term Cy, can be even larger than the
normal terms. Therefore, the ill-conditioning of the elasticity tensor C is caused by the
magnitude differences between the shear term Cp, and the shear terms (C,4,C,,). More-
over, it is also observed in the "Appendix" that C,pn; contains exponential terms [terms
A and B in (A.3) and (A.5)]. Consequently, once the deformation is sufficiently large,
these differences between the components of C are extremely large (increasing exponen-
tially) and in turn lead to an ill-conditioned elasticity tensor. In contrast, when the neo-
Hookean law was used the resulting condition number increases almost linearly with
increasing stretch, similarly to the difference between the neo-Hookean normal terms
and the shear terms shown in Fig. 11. The neo-Hookean elasticity tensor has a low con-
dition number curve, see the dotted curve in Fig. 8 and consequently it produces the
correct solution, see curve 5 in Fig. 5.

For the Holzapfel model, the difference amongst the components of C can be adjusted
through the shear modulus . If the magnitudes of the components of Cjs, are more
comparable to the corresponding ones of C,p;, €.g. using a larger shear modulus y, then
the relative difference amongst the components of C are reduced, see Fig. 11. This helps
decrease the condition number of the elasticity tensor in the equibiaxial simulation and
hence the critical stretch is significantly increased, see Fig. 8.

For the case of the smallest shear modulus u = ©*/10, the unphysical deforma-

tion begins from the smallest critical stretch 1 = /¢ /10

, see Fig. 5. When larger val-
ues of the shear modulus © = u* and u = 10u™* were used, the critical stretches
increases significantly, denoted by % " and 2Ok *, respectively. Consequently, we have
N(l;oﬂ ' > M ’ > ¥ K 10 Correspondingly, Fig. 8 shows the relative differences of the con-
dition numbers for the three cases. These differences always start from the correspond-
ing lower critical stretch, at which the unphysical deformation begins to take place. For
example, if © = 10u* and u = 100u* the condition number is decreased by 55 and 75 %,
respectively. These moderate reductions already ensure the physical behaviour of the
material model. When the augmented Lagrange method was not utilized, the smallest
critical stretch was decreased, 1 /10 _ 1.2, since the other ill-conditioning is caused by
the nearly incompressible constraint. Therefore, the augmented Lagrange method can
only mitigate the ill-conditioning problem but cannot prevent this in the deformation
range of interest as an alternative solution as suggested by Helfenstein et al. [12]. Thus,
apart from the source of the thickening effect proposed by Helfenstein et al. [12], we
demonstrated that it is caused by the large difference between the two energy terms.
Figure 2 shows that the unphysical deformation is observed in a plane or in directions
orthogonal to the fibre direction. This is also supported by the equibiaxial test with the
unrealistic displacement perpendicular to the fibre plane.

Moreover, the model of Weiss et al. [32] is constructed by an isotropic strain—energy
term as a polynomial function in terms of the invariants I; and I, whereas the aniso-
tropic term is characterized as an exponential function for one embedded fibre fam-
ily. Therefore, this model would have a large difference in the mechanical contribution
between the isotropic energy and the anisotropic energy, leading to the same instability

problem as reported in Helfenstein et al. [12]. The thickening effect was also similarly



Duong et al. Asia Pac. J. Comput. Engin. (2015) 2:3 Page 150f 18

observed for pure shear tests (Duong [17]). More importantly, the same is found for sim-
ulation of tension tests using of the MFH model. To this end, the influence of the shear
modulus was also investigated for the MFH model as shown in Fig. 10. The model shows
the bad effect in the physiological deformation range of the tension test with pu = p*
and p = 0.1 The higher the shear modulus (u = 10x*) is chosen, the more stable the
MFH model becomes. Thus, the critical stretch increases with the increase of the shear
modulus which should be chosen as large as possible for numerical stability. For the
case of an incompressible Fung model in-plane stress, Sun and Sacks [15] imposed both
the upper bound for the condition number and the convexity for the model to achieve
numerical stability. However, this approach is limited to a specific case of plane stress.
As shown in Fig. 8, the condition number is a function of deformation and the material
parameters. Thus, preventing the ill-conditioning by fixing a predicted upper bound for
the condition number is not always plausible.

Figure 5 shows an equibiaxial test simulated by the neo-Hookean model with only
a linear polynomial function. The corresponding condition number curve of the neo-
Hookean elasticity tensor is regular in Fig. 8. Moreover, Helfenstein et al. [12] have even
utilized the real measure of fibre stretch (I and Ig) instead of (I and Is) for the model
by Rubin and Bodner [33], but there is of course negligible effect observed. This is due to
the fact that there are only exponential terms in the strain—energy formulation. Thus, the
instability problem originates from the unbalance of strain energy. Moreover, a model
composed of the neo-Hookean and an isotropic version of the Fung-type potential
(Nguyen et al. [20]; Duong et al. [21]) [see (5)] is also immune from the ill-conditioning
even at very high stretch up to 2.0 due to the absence of an anisotropic term. A model
proposed by Peng et al. [37] has both the fibre and the matrix terms described by poly-
nomial functions and a shear interaction is modelled by a product of a weak exponential
and a polynomial function in terms of all principal invariants. Therefore, the difference
between the anisotropic and isotropic strain energy is equilibrated, leading to a stable
model. In addition, Gasser et al. [11] have modified the structure tensor characterizing
dispersion of fibre orientations to overcome the unphysical deformation. As discussed
before, the fibre dispersion helps reduce the large difference between the isotropic strain
energy and the anisotropic strain energy and therefore ensure stability of their model.
However, the fibre dispersion is not always easily obtained due to limits of experiments

Conclusions

Generally, the larger difference in mechanical contributions apparently gives rise to the
larger differences amongst the components of the material tangent stiffness matrix and
therefore leads to the ill-conditioned stiffness matrix. The similar ill-conditioning is
known from the simulation of composite structures comprising two main constituents
with a great difference in mechanical stiffness. Typical examples of this are the organic-
coated metals. Throughout the investigation of the ill-conditioning problem, the mag-
nitude of u strongly affects the simulation accuracy of the Holzapfel model but has no
influence on the accuracy of the neo-Hookean model. Therefore, the thickening effect
does not originate from the “fibre rotation” as discussed by Gasser et al. [11]. Moreover,
the shear modulus also significantly influences the numerical stability of the MFH model
but has no effect on any isotropic Fung-type model (Duong [17]). It accounts for the
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ill-conditioning problem, which results from the large condition numbers of the elastic-
ity tensors of the Holzapfel model and the MFH model. Since the shear modulus u of
soft tissue usually varies in a bounded set, the shear modulus p should be chosen closer
to the physically upper bound (its natural value). Alternatively, Shore hardness indenta-
tion tests could be used to measure the shear modulus of the matrix directly (Duong
[17]). These measured values of the shear modulus help ensure the numerical stability of
the material law (Duong [17]).
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Appendix

To implement the material laws for nearly incompressible materials into finite element
schemes, we need to employ the penalty method using the volumetric strain—energy
function as presented above. To this end, we split the deformation gradient F into the
isochoric part F = J~/3F and the volumetric part //, Thus, F is the modified deforma-
tion gradient tensor associated with the modified invariants I, (@ = 1,4, 6). The second
Piola—Kirchhoff stress for the Holzapfel model is calculated as

S$=2—=2 —
al, 0C 03 aC

oW Z oW [9l, 01, 09I, 0I3
aC al,

) = Siso + Svol + Sani (A.1)
a=1,4,6

I,(a = 1,4, 6) are the modified invariants when the volumetric—isochoric split is applied
to the strain—energy function. The two terms Siso and Sy, are derived from the isotropic
energy and the volumetric energy, respectively. They are available in textbooks (Holzap-
fel [36]). The anisotropic part of the second Piola—Kirchhoff stress is

Sani =

zaWani =2|:8Wan1814~814 a‘)V21n18[(531(3:|
aC 9l, 9L 9C = 9lg 9l oC
9l, 33 9C ' olg 0l3 AC

(A2)

The strain—energy function Wayi, Eq. (9), is an exponential function and so are all its
derivatives. The first derivatives with respect to the invariants are

aVVani - -
—=% = kipkop (s — 1) explkap(Ia — 1)?],
014 —_—
A
8VVani - -
o7 = Kipksp(Ts — 1) expls, (s — 1)?] (A3)
6 N———

B
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The constitutive matrix is calculated as a second derivative of the strain energy function
with respect to the right Cauchy—Green strain as:
3w
C= 4'72 = (Ciso + (Cvol + (Cani (A-4)
oC
The two terms Cjso and Cy,) are derived from the isotropic energy and the volumetric
energy, respectively. They are available in textbooks (Holzapfel [36]). The anisotropic
term is the exponential function

9Sani d 7 -1/3 1-
Cani =2 8211 = 4/<1p% [ksz(M - DI <ao ® a0 — 1iC
- _ 1_ _
+k3pB(ls — 1)1 13 (go ®go— §I6C 1)] (A5)

In (A.5) we need to use following derivatives:

0A  0A 0Ly — 0, 0B 0B il — ol

= ok, (I — DA, = =0 = 2k, (I — 1)B—,

dC 91, 9C dC’ 9C ~ 8l aC aC

32 Wani — 2 Wani —

—— = kipkypAll + 2ksp(la — 1], —="= = kipk3,B[1 + 2ks,(Is — 1)*] (A.6)
g 12

These above quantities are suitable for the total Lagrange formulations. For the updated
Lagrange formulations, a push-forward step is furthermore required.
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